Theory RBT_add
section ‹\isaheader{Additions to RB-Trees}›
theory RBT_add
imports
"HOL-Library.RBT_Impl"
"../Iterator/Iterator"
begin
text_raw ‹\label{thy:RBT_add}›
lemma tlt_trans: "⟦l |« u; u≤v⟧ ⟹ l |« v"
by (induct l) auto
lemma trt_trans: "⟦ u≤v; v«|r ⟧ ⟹ u«|r"
by (induct r) auto
lemmas tlt_trans' = tlt_trans[OF _ less_imp_le]
lemmas trt_trans' = trt_trans[OF less_imp_le]
primrec rm_iterateoi
:: "('k,'v) RBT_Impl.rbt ⇒ ('k × 'v, 'σ) set_iterator"
where
"rm_iterateoi RBT_Impl.Empty c f σ = σ" |
"rm_iterateoi (RBT_Impl.Branch col l k v r) c f σ = (
if (c σ) then
let σ' = rm_iterateoi l c f σ in
if (c σ') then
rm_iterateoi r c f (f (k, v) σ')
else σ'
else
σ
)"
lemma rm_iterateoi_abort :
"¬(c σ) ⟹ rm_iterateoi t c f σ = σ"
by (cases t) auto
lemma rm_iterateoi_alt_def :
"rm_iterateoi RBT_Impl.Empty = set_iterator_emp"
"rm_iterateoi (RBT_Impl.Branch col l k v r) =
set_iterator_union (rm_iterateoi l)
(set_iterator_union (set_iterator_sng (k, v)) (rm_iterateoi r))"
by (simp_all add: fun_eq_iff set_iterator_emp_def rm_iterateoi_abort
set_iterator_union_def set_iterator_sng_def Let_def)
declare rm_iterateoi.simps[simp del]
primrec rm_reverse_iterateoi
:: "('k,'v) RBT_Impl.rbt ⇒ ('k × 'v, 'σ) set_iterator"
where
"rm_reverse_iterateoi RBT_Impl.Empty c f σ = σ" |
"rm_reverse_iterateoi (Branch col l k v r) c f σ = (
if (c σ) then
let σ' = rm_reverse_iterateoi r c f σ in
if (c σ') then
rm_reverse_iterateoi l c f (f (k, v) σ')
else σ'
else
σ
)"
lemma rm_reverse_iterateoi_abort :
"¬(c σ) ⟹ rm_reverse_iterateoi t c f σ = σ"
by (cases t) auto
lemma rm_reverse_iterateoi_alt_def :
"rm_reverse_iterateoi RBT_Impl.Empty = set_iterator_emp"
"rm_reverse_iterateoi (RBT_Impl.Branch col l k v r) =
set_iterator_union (rm_reverse_iterateoi r)
(set_iterator_union (set_iterator_sng (k, v)) (rm_reverse_iterateoi l))"
by (simp_all add: fun_eq_iff set_iterator_emp_def rm_reverse_iterateoi_abort
set_iterator_union_def set_iterator_sng_def Let_def)
declare rm_reverse_iterateoi.simps[simp del]
lemma (in linorder) map_to_set_lookup_entries:
"rbt_sorted t ⟹ map_to_set (rbt_lookup t) = set (RBT_Impl.entries t)"
using map_of_entries[symmetric,of t]
by (simp add: distinct_entries map_to_set_map_of)
lemma (in linorder) rm_iterateoi_correct:
fixes t::"('a, 'v) RBT_Impl.rbt"
assumes is_sort: "rbt_sorted t"
defines "it ≡
RBT_add.rm_iterateoi::(('a, 'v) RBT_Impl.rbt ⇒ ('a × 'v, 'σ) set_iterator)"
shows "map_iterator_linord (it t) (rbt_lookup t)"
using is_sort
proof (induct t)
case Empty
show ?case unfolding it_def
by (simp add: rm_iterateoi_alt_def
map_iterator_linord_emp_correct rbt_lookup_Empty)
next
case (Branch c l k v r)
note is_sort_t = Branch(3)
from Branch(1) is_sort_t have
l_it: "map_iterator_linord (it l) (rbt_lookup l)" by simp
from Branch(2) is_sort_t have
r_it: "map_iterator_linord (it r) (rbt_lookup r)" by simp
note kv_it = map_iterator_linord_sng_correct[of k v]
have kv_r_it : "set_iterator_map_linord
(set_iterator_union (set_iterator_sng (k, v)) (it r))
(map_to_set [k ↦ v] ∪ map_to_set (rbt_lookup r))"
proof (rule map_iterator_linord_union_correct [OF kv_it r_it])
fix kv kv'
assume pre: "kv ∈ map_to_set [k ↦ v]" "kv' ∈ map_to_set (rbt_lookup r)"
obtain k' v' where kv'_eq[simp]: "kv' = (k', v')" by (rule prod.exhaust)
from pre is_sort_t show "fst kv < fst kv'"
apply (simp add: map_to_set_lookup_entries split: prod.splits)
apply (metis entry_in_tree_keys rbt_greater_prop)
done
qed
have l_kv_r_it : "set_iterator_map_linord (it (Branch c l k v r))
(map_to_set (rbt_lookup l)
∪ (map_to_set [k ↦ v] ∪ map_to_set (rbt_lookup r)))"
unfolding it_def rm_iterateoi_alt_def
unfolding it_def[symmetric]
proof (rule map_iterator_linord_union_correct [OF l_it kv_r_it])
fix kv1 kv2
assume pre: "kv1 ∈ map_to_set (rbt_lookup l)"
"kv2 ∈ map_to_set [k ↦ v] ∪ map_to_set (rbt_lookup r)"
obtain k1 v1 where kv1_eq[simp]: "kv1 = (k1, v1)" by (rule prod.exhaust)
obtain k2 v2 where kv2_eq[simp]: "kv2 = (k2, v2)" by (rule prod.exhaust)
from pre is_sort_t show "fst kv1 < fst kv2"
apply (simp add: map_to_set_lookup_entries split: prod.splits)
by (metis (lifting) map_of_entries neqE option.simps(3)
ord.rbt_lookup_rbt_greater ord.rbt_lookup_rbt_less rbt_greater_trans
rbt_less_trans weak_map_of_SomeI)
qed
from is_sort_t
have map_eq: "map_to_set (rbt_lookup l)
∪ (map_to_set [k ↦ v] ∪ map_to_set (rbt_lookup r)) =
map_to_set (rbt_lookup (Branch c l k v r))"
by (simp add: set_eq_iff map_to_set_lookup_entries)
from l_kv_r_it[unfolded map_eq]
show ?case .
qed
lemma (in linorder) rm_reverse_iterateoi_correct:
fixes t::"('a, 'v) RBT_Impl.rbt"
assumes is_sort: "rbt_sorted t"
defines "it ≡ RBT_add.rm_reverse_iterateoi
::(('a, 'v) RBT_Impl.rbt ⇒ ('a × 'v, 'σ) set_iterator)"
shows "map_iterator_rev_linord (it t) (rbt_lookup t)"
using is_sort
proof (induct t)
case Empty
show ?case unfolding it_def
by (simp add: rm_reverse_iterateoi_alt_def
map_iterator_rev_linord_emp_correct rbt_lookup_Empty)
next
case (Branch c l k v r)
note is_sort_t = Branch(3)
from Branch(1) is_sort_t have
l_it: "map_iterator_rev_linord (it l) (rbt_lookup l)" by simp
from Branch(2) is_sort_t have
r_it: "map_iterator_rev_linord (it r) (rbt_lookup r)" by simp
note kv_it = map_iterator_rev_linord_sng_correct[of k v]
have kv_l_it : "set_iterator_map_rev_linord
(set_iterator_union (set_iterator_sng (k, v)) (it l))
(map_to_set [k ↦ v] ∪ map_to_set (rbt_lookup l))"
proof (rule map_iterator_rev_linord_union_correct [OF kv_it l_it])
fix kv kv'
assume pre: "kv ∈ map_to_set [k ↦ v]" "kv' ∈ map_to_set (rbt_lookup l)"
obtain k' v' where kv'_eq[simp]: "kv' = (k', v')" by (rule prod.exhaust)
from pre is_sort_t show "fst kv > fst kv'"
apply (simp add: map_to_set_lookup_entries split: prod.splits)
apply (metis entry_in_tree_keys rbt_less_prop)
done
qed
have r_kv_l_it : "set_iterator_map_rev_linord (it (Branch c l k v r))
(map_to_set (rbt_lookup r)
∪ (map_to_set [k ↦ v] ∪ map_to_set (rbt_lookup l)))"
unfolding it_def rm_reverse_iterateoi_alt_def
unfolding it_def[symmetric]
proof (rule map_iterator_rev_linord_union_correct [OF r_it kv_l_it])
fix kv1 kv2
assume pre: "kv1 ∈ map_to_set (rbt_lookup r)"
"kv2 ∈ map_to_set [k ↦ v] ∪ map_to_set (rbt_lookup l)"
obtain k1 v1 where kv1_eq[simp]: "kv1 = (k1, v1)" by (rule prod.exhaust)
obtain k2 v2 where kv2_eq[simp]: "kv2 = (k2, v2)" by (rule prod.exhaust)
from pre is_sort_t show "fst kv1 > fst kv2"
apply (simp add: map_to_set_lookup_entries split: prod.splits)
by (metis (mono_tags) entry_in_tree_keys neq_iff option.simps(3)
ord.rbt_greater_prop ord.rbt_lookup_rbt_less rbt_less_trans
rbt_lookup_in_tree)
qed
from is_sort_t
have map_eq: "map_to_set (rbt_lookup r)
∪ (map_to_set [k ↦ v] ∪ map_to_set (rbt_lookup l)) =
map_to_set (rbt_lookup (Branch c l k v r))"
by (auto simp add: set_eq_iff map_to_set_lookup_entries)
from r_kv_l_it[unfolded map_eq]
show ?case .
qed
lemma pi_rm[icf_proper_iteratorI]:
"proper_it (RBT_add.rm_iterateoi t) (RBT_add.rm_iterateoi t)"
by (induct t) (simp_all add: rm_iterateoi_alt_def icf_proper_iteratorI)
lemma pi_rm_rev[icf_proper_iteratorI]:
"proper_it (RBT_add.rm_reverse_iterateoi t) (RBT_add.rm_reverse_iterateoi t)"
by (induct t) (simp_all add: rm_reverse_iterateoi_alt_def
icf_proper_iteratorI)
primrec bheight_aux :: "('a,'b) RBT_Impl.rbt ⇒ nat ⇒ nat"
where
"⋀acc. bheight_aux RBT_Impl.Empty acc = acc"
| "⋀acc. bheight_aux (RBT_Impl.Branch c lt k v rt) acc =
bheight_aux lt (case c of RBT_Impl.B ⇒ Suc acc | RBT_Impl.R ⇒ acc)"
lemma bheight_aux_eq: "bheight_aux t a = bheight t + a"
by (induct t arbitrary: a) (auto split: RBT_Impl.color.split)
definition [code_unfold]: "rbt_bheight t ≡ bheight_aux t 0"
lemma "rbt_bheight t = bheight t"
unfolding rbt_bheight_def by (simp add: bheight_aux_eq)
end