Theory Iterator
theory Iterator
imports
It_to_It
SetIteratorOperations
SetIteratorGA
Proper_Iterator
Gen_Iterator
Idx_Iterator
begin
text ‹Folding over a list created by a proper iterator can be replaced
by a single iteration›
lemma proper_it_to_list_opt[refine_transfer_post_subst]:
assumes PR: "proper_it' it it'"
shows "foldli o it_to_list it ≡ it'"
proof (rule eq_reflection, intro ext)
fix s c f σ
obtain l where "it s = foldli l" and "it' s = foldli l"
by (rule proper_itE[OF PR[THEN proper_it'D[where s=s]]])
thus "(foldli o it_to_list it) s c f σ = it' s c f σ"
by (simp add: comp_def it_to_list_def)
qed
lemma iterator_cnv_to_comp[refine_transfer_post_simp]:
"foldli (it_to_list it x) = (foldli o it_to_list it) x"
by auto
declare idx_iteratei_eq_foldli[autoref_rules]
end