Theory Cardinality_Continuum.Cardinality_Continuum
section ‹The Cardinality of the Continuum›
theory Cardinality_Continuum
imports Complex_Main Cardinality_Continuum_Library
begin
subsection ‹$|\mathbb{R}| \leq |2^\mathbb{Q}|$ via Dedekind cuts›
lemma le_cSup_iff:
fixes A :: "'a :: conditionally_complete_linorder set"
assumes "A ≠ {}" "bdd_above A"
shows "Sup A ≥ c ⟷ (∀x<c. ∃y∈A. y > x)"
using assms by (meson less_cSup_iff not_le_imp_less order_less_irrefl order_less_le_trans)
text ‹
We show that the function mapping a real number to all the rational numbers below it is an
injective map from the reals to $2^\mathbb{Q}$. This is the same idea that is used in
the Dedekind cut definition of the reals.
›
lemma inj_Dedekind_cut:
fixes f :: "real ⇒ rat set"
defines "f ≡ (λx::real. {r::rat. of_rat r < x})"
shows "inj f"
proof
fix x y :: real
assume "f x = f y"
have *: "Sup (real_of_rat ` {r. real_of_rat r < z}) = z" for z :: real
proof -
have "real_of_rat ` {r. real_of_rat r < z} = {r∈ℚ. r < z}"
by (auto elim!: Rats_cases)
also have "Sup … = z"
proof (rule antisym)
have "{r ∈ ℚ. r < z} ≠ {}"
using Rats_no_bot_less less_eq_real_def by blast
hence "Sup {r∈ℚ. r < z} ≤ Sup {..z}"
by (rule cSup_subset_mono) auto
also have "… = z"
by simp
finally show "Sup {r∈ℚ. r < z} ≤ z" .
next
show "Sup {r∈ℚ. r < z} ≥ z"
proof (subst le_cSup_iff)
show "{r∈ℚ. r < z} ≠ {}"
using Rats_no_bot_less less_eq_real_def by blast
show "∀y<z. ∃r∈{r∈ℚ. r < z}. y < r"
using Rats_dense_in_real by fastforce
show "bdd_above {r ∈ ℚ. r < z}"
by (rule bdd_aboveI[of _ z]) auto
qed
qed
finally show ?thesis .
qed
from ‹f x = f y› have "Sup (real_of_rat ` f x) = Sup (real_of_rat ` f y)"
by simp
thus "x = y"
by (simp only: * f_def)
qed
subsection ‹$2^{|\mathbb{N}|} \leq |\mathbb{R}|$ via ternary fractions›
text ‹
For the other direction, we construct an injective function that maps a set of natural numbers
‹A› to a real number by constructing a ternary decimal number of the form
$d_0. d_1 d_2 d_3 \ldots$ where $d_m$ is 1 if ‹m ∈ A› and 0 otherwise.
We will first show a few more general results about such ‹n›-ary fraction expansions.
›
lemma geometric_sums':
fixes c :: "'a :: real_normed_field"
assumes "norm c < 1"
shows "(λn. c ^ (n + m)) sums (c ^ m / (1 - c))"
proof -
have "(λn. c ^ m * c ^ n) sums (c ^ m * (1 / (1 - c)))"
by (intro sums_mult geometric_sums assms)
thus ?thesis
by (simp add: power_add field_simps)
qed
lemma summable_nary_fraction:
fixes d :: real and f :: "nat ⇒ real"
assumes "⋀n. norm (f n) ≤ c" "d > 1"
shows "summable (λn. f n / d ^ n)"
proof (rule summable_comparison_test)
show "∃N. ∀n≥N. norm (f n / d ^ n :: real) ≤ c * (1 / d) ^ n"
using assms by (intro exI[of _ 0]) (auto simp: field_simps)
show "summable (λn. c * (1 / d) ^ n :: real)"
using assms by (intro summable_mult summable_geometric) auto
qed
text ‹
Consider two ‹n›-ary fraction expansions $u = u_1. u_2 u_3 \ldots$ and
$v = v_1. v_2 v_3 \ldots$ with ‹n ≥ 2›.
Suppose that all the $u_i$ and $v_i$ are between 0 and ‹n - 2› (i.e. the highest digit
does not occur).
Then ‹u› and ‹v› are equal if and only if all $u_i = v_i$ for all ‹i›.
Note that without the additional restriction the result does not hold, as e.g.
the decimal numbers $0.2$ and $0.1\overline{9}$ are equal.
The reasoning boils down to showing that if ‹m› is the smallest index where the two sequences
differ, then $|u-v| \geq \frac{1}{d-1} > 0$.
›
lemma nary_fraction_unique:
fixes u v :: "nat ⇒ nat"
assumes f_eq: "(∑n. real (u n) / real d ^ n) = (∑n. real (v n) / real d ^ n)"
assumes uv: "⋀n. u n ≤ d - 2" "⋀n. v n ≤ d - 2" and d: "d ≥ 2"
shows "u = v"
proof -
define f :: "(nat ⇒ nat) ⇒ real" where
"f = (λu. ∑n. real (u n) / real d ^ n)"
have "u m = v m" for m
proof (induction m rule: less_induct)
case (less m)
show "u m = v m"
proof (rule ccontr)
assume "u m ≠ v m"
show False
using ‹u m ≠ v m› uv less.IH f_eq
proof (induction "u m" "v m" arbitrary: u v rule: linorder_wlog)
case (sym u v)
from sym(1)[of v u] sym(2-) show ?case
by (simp add: eq_commute)
next
case (le u v)
have uv': "real (u n) ≤ real d - 2" "real (v n) ≤ real d - 2" for n
by (metis d of_nat_diff of_nat_le_iff of_nat_numeral le(3,4))+
have "f u - f v - (real (u m) - real (v m)) / real d ^ m ≤
(real d - 2) * ((1 / real d) ^ m / (real d - 1))"
proof (rule sums_le)
have "(λn. (real (u n) - real (v n)) / real d ^ n) sums (f u - f v)"
unfolding diff_divide_distrib f_def using le d uv'
by (intro sums_diff summable_sums summable_nary_fraction[where c = "real d - 2"]) auto
hence "(λn. (real (u (n + m)) - real (v (n + m))) / real d ^ (n + m)) sums
(f u - f v - (∑n<m. (real (u n) - real (v n)) / real d ^ n))"
by (rule sums_split_initial_segment)
also have "(∑n<m. (real (u n) - real (v n)) / real d ^ n) = 0"
by (intro sum.neutral) (use le in auto)
finally have "(λn. (real (u (n + m)) - real (v (n + m))) / real d ^ (n + m)) sums (f u - f v)"
by simp
thus "(λn. (real (u (Suc n + m)) - real (v (Suc n + m))) / real d ^ (Suc n + m)) sums
(f u - f v - (real (u m) - real (v m)) / real d ^ m)"
by (subst sums_Suc_iff) auto
next
have "(λn. (real d - 2) * ((1 / real d) ^ (n + Suc m))) sums
((real d - 2) * ((1 / real d) ^ Suc m / (1 - 1 / real d)))"
using d by (intro sums_mult geometric_sums') auto
thus "(λn. (real d - 2) * ((1 / real d) ^ (n + Suc m))) sums
((real d - 2) * ((1 / real d) ^ m / (real d - 1)) :: real)"
using d by (simp add: sums_iff field_simps)
next
fix n :: nat
have "(real (u (Suc n + m)) - real (v (Suc n + m))) / real d ^ (Suc n + m) ≤
((real d - 2) - 0) / real d ^ (Suc n + m)"
using uv' by (intro divide_right_mono diff_mono) auto
thus "(real (u (Suc n + m)) - real (v (Suc n + m))) / real d ^ (Suc n + m) ≤
(real d - 2) * (1 / real d) ^ (n + Suc m)"
by (simp add: field_simps)
qed
hence "f u - f v ≤
(real d - 2) / (real d - 1) / real d ^ m + (real (u m) - real (v m)) / real d ^ m"
by (simp add: field_simps)
also have "… = ((real d - 2) / (real d - 1) + real (u m) - real (v m)) / real d ^ m"
by (simp add: add_divide_distrib diff_divide_distrib)
also have "… = ((real d - 2) / (real d - 1) + real_of_int (int (u m) - int (v m))) / real d ^ m"
using ‹u m ≤ v m› by simp
also have "… ≤ ((real d - 2) / (real d - 1) + -1) / real d ^ m"
using le d by (intro divide_right_mono add_mono) auto
also have "(real d - 2) / (real d - 1) + -1 = -1 / (real d - 1)"
using d by (simp add: field_simps)
also have "… < 0"
using d by (simp add: field_simps)
finally have "f u - f v < 0"
using d by (simp add: field_simps)
with le show False
by (simp add: f_def)
qed
qed
qed
thus ?thesis
by blast
qed
text ‹
It now follows straightforwardly that mapping sets of natural numbers to ternary fraction
expansions is indeed injective. For binary fractions, this would not work due to the
aforementioned issue.
›
lemma inj_nat_set_to_ternary:
fixes f :: "nat set ⇒ real"
defines "f ≡ (λA. ∑n. (if n ∈ A then 1 else 0) / 3 ^ n)"
shows "inj f"
proof
fix A B :: "nat set"
assume "f A = f B"
have "(λn. if n ∈ A then 1 else 0 :: nat) = (λn. if n ∈ B then 1 else 0 :: nat)"
proof (rule nary_fraction_unique)
have *: "(∑n. (if n ∈ A then 1 else 0) / 3 ^ n) =
(∑n. real (if n ∈ A then 1 else 0) / real 3 ^ n)"
for A by (intro suminf_cong) auto
show "(∑n. real (if n ∈ A then 1 else 0) / real 3 ^ n) =
(∑n. real (if n ∈ B then 1 else 0) / real 3 ^ n)"
using ‹f A = f B› by (simp add: f_def *)
qed auto
thus "A = B"
by (metis equalityI subsetI zero_neq_one)
qed
subsection ‹Equipollence proof›
theorem eqpoll_UNIV_real: "(UNIV :: real set) ≈ (UNIV :: nat set set)"
proof (rule lepoll_antisym)
show "(UNIV :: nat set set) ≲ (UNIV :: real set)"
unfolding lepoll_def using inj_nat_set_to_ternary by blast
next
have "(UNIV :: real set) ≲ (UNIV :: rat set set)"
unfolding lepoll_def using inj_Dedekind_cut by blast
also have "… = Pow (UNIV :: rat set)"
by simp
also have "… ≈ Pow (UNIV :: nat set)"
by (rule eqpoll_Pow) (auto simp: infinite_UNIV_char_0 eqpoll_UNIV_nat_iff)
also have "… = (UNIV :: nat set set)"
by simp
finally show "(UNIV :: real set) ≲ (UNIV :: nat set set)" .
qed
text ‹
We can also write the language in the language of cardinal numbers as
$|\mathbb{R}| = 2^{\aleph_0}$ using Isabelle's cardinal number library:
›
corollary card_of_UNIV_real: "|UNIV :: real set| =o ctwo ^c natLeq"
proof -
have "|UNIV :: real set| =o |UNIV :: nat set set|"
using eqpoll_UNIV_real by (simp add: eqpoll_iff_card_of_ordIso)
also have "|UNIV :: nat set set| =o cpow |UNIV :: nat set|"
by (simp add: cpow_def)
also have "cpow |UNIV :: nat set| =o ctwo ^c |UNIV :: nat set|"
by (rule cpow_cexp_ctwo)
also have "ctwo ^c |UNIV :: nat set| =o ctwo ^c natLeq"
by (intro cexp_cong2) (simp_all add: card_of_nat Card_order_ctwo)
finally show ?thesis .
qed
subsection ‹Corollaries for real intervals›
text ‹
It is easy to show that any real interval (whether open, closed, or infinite) is equipollent
to the full set of real numbers.
›
lemma eqpoll_Ioo_real:
fixes a b :: real
assumes "a < b"
shows "{a<..<b} ≈ (UNIV :: real set)"
proof -
have Ioo: "{a<..<b} ≈ {0::real<..<1}" if "a < b" for a b :: real
proof -
have "bij_betw (λx. x * (b - a) + a) {0<..<1} {a<..<b}"
proof (rule bij_betwI[of _ _ _ "λy. (y - a) / (b - a)"], goal_cases)
case 1
show ?case
proof
fix x :: real assume x: "x ∈ {0<..<1}"
have "x * (b - a) + a > 0 + a"
using x ‹a < b› by (intro add_strict_right_mono mult_pos_pos) auto
moreover have "x * (b - a) + a < 1 * (b - a) + a"
using x ‹a < b› by (intro add_strict_right_mono mult_strict_right_mono) auto
ultimately show "x * (b - a) + a ∈ {a<..<b}"
by simp
qed
qed (use ‹a < b› in ‹auto simp: field_simps›)
thus ?thesis
using eqpoll_def eqpoll_sym by blast
qed
have "{a<..<b} ≈ {-pi/2<..<pi/2}"
using eqpoll_trans[OF Ioo[of a b] eqpoll_sym[OF Ioo[of "-pi/2" "pi/2"]]] assms
by simp
also have "bij_betw tan {-pi/2<..<pi/2} (UNIV :: real set)"
by (rule bij_betwI[of _ _ _ arctan])
(use arctan_lbound arctan_ubound in ‹auto simp: arctan_tan tan_arctan›)
hence "{-pi/2<..<pi/2} ≈ (UNIV :: real set)"
using eqpoll_def by blast
finally show ?thesis .
qed
lemma eqpoll_real:
assumes "{a::real<..<b} ⊆ X" "a < b"
shows "X ≈ (UNIV :: real set)"
using eqpoll_Ioo_real[OF assms(2)] assms(1)
by (meson eqpoll_sym lepoll_antisym lepoll_trans1 subset_UNIV subset_imp_lepoll)
lemma eqpoll_Icc_real: "(a::real) < b ⟹ {a..b} ≈ (UNIV :: real set)"
and eqpoll_Ioc_real: "(a::real) < b ⟹ {a<..b} ≈ (UNIV :: real set)"
and eqpoll_Ico_real: "(a::real) < b ⟹ {a..<b} ≈ (UNIV :: real set)"
by (rule eqpoll_real[of a b]; force)+
lemma eqpoll_Ici_real: "{a::real..} ≈ (UNIV :: real set)"
and eqpoll_Ioi_real: "{a::real<..} ≈ (UNIV :: real set)"
by (rule eqpoll_real[of a "a + 1"]; force)+
lemma eqpoll_Iic_real: "{..a::real} ≈ (UNIV :: real set)"
and eqpoll_Iio_real: "{..<a::real} ≈ (UNIV :: real set)"
by (rule eqpoll_real[of "a - 1" a]; force)+
lemmas eqpoll_real_ivl =
eqpoll_Ioo_real eqpoll_Ioc_real eqpoll_Ico_real eqpoll_Icc_real
eqpoll_Iio_real eqpoll_Iic_real eqpoll_Ici_real eqpoll_Ioi_real
lemmas card_of_ivl_real =
eqpoll_real_ivl[THEN eqpoll_imp_card_of_ordIso, THEN ordIso_transitive[OF _ card_of_UNIV_real]]
subsection ‹Corollaries for vector spaces›
text ‹
We will now also show some results about the cardinality of vector spaces. To do this,
we use the obvious isomorphism between a vector space ‹V› with a basis ‹B› and the set of
finite-support functions ‹B → V›.
›
lemma (in vector_space) card_of_span:
assumes "independent B"
shows "|span B| =o |Func_finsupp 0 B (UNIV :: 'a set)|"
proof -
define f :: "('b ⇒ 'a) ⇒ 'b" where "f = (λg. ∑b | g b ≠ 0. scale (g b) b)"
define g :: "'b ⇒ 'b ⇒ 'a" where "g = representation B"
have "bij_betw g (span B) (Func_finsupp 0 B UNIV)"
proof (rule bij_betwI[of _ _ _ f], goal_cases)
case 1
thus ?case
by (auto simp: g_def Func_finsupp_def finite_representation intro: representation_ne_zero)
next
case 2
thus ?case
by (auto simp: f_def Func_finsupp_def intro!: span_sum span_scale intro: span_base)
next
case (3 x)
show "f (g x) = x" unfolding g_def f_def
by (intro sum_nonzero_representation_eq) (use 3 assms in auto)
next
case (4 v)
show "g (f v) = v" unfolding g_def using 4
by (intro representation_eqI)
(auto simp: assms f_def Func_finsupp_def intro: span_base
intro!: sum.cong span_sum span_scale split: if_splits)
qed
thus "|span B| =o |Func_finsupp 0 B (UNIV :: 'a set)|"
by (simp add: card_of_ordIsoI)
qed
text ‹
We can now easily show the following: Let ‹K› be an infinite field and $V$ a non-trivial
finite-dimensional ‹K›-vector space. Then ‹|V| = |K|›.
›
lemma (in vector_space) card_of_span_finite_dim_infinite_field:
assumes "independent B" and "finite B" and "B ≠ {}" and "infinite (UNIV :: 'a set)"
shows "|span B| =o |UNIV :: 'a set|"
proof -
have "|span B| =o |Func_finsupp 0 B (UNIV :: 'a set)|"
by (rule card_of_span) fact
also have "|Func_finsupp 0 B (UNIV :: 'a set)| =o cmax |B| |UNIV :: 'a set|"
proof (rule card_of_Func_finsupp_infinite)
show "UNIV - {0 :: 'a} ≠ {}"
using assms by (metis finite.emptyI infinite_remove)
qed (use assms in auto)
also have "cmax |B| |UNIV :: 'a set| =o |UNIV :: 'a set|"
using assms by (intro cmax2 ordLeq3_finite_infinite) auto
finally show ?thesis .
qed
text ‹
Similarly, we can show the following: Let ‹V› be an infinite-dimensional vector space ‹V› over
some (not necessarily infinite) field ‹K›. Then $|V| = \text{max}(\text{dim}_K(V), |K|)$.
›
lemma (in vector_space) card_of_span_infinite_dim_infinite_field:
assumes "independent B" "infinite B"
shows "|span B| =o cmax |B| |UNIV :: 'a set|"
proof -
have "|span B| =o |Func_finsupp 0 B (UNIV :: 'a set)|"
by (rule card_of_span) fact
also have "|Func_finsupp 0 B (UNIV :: 'a set)| =o cmax |B| |UNIV :: 'a set|"
proof (rule card_of_Func_finsupp_infinite)
have "(1 :: 'a) ∈ UNIV" "(1 :: 'a) ≠ 0"
by auto
thus "UNIV - {0 :: 'a} ≠ {}"
by blast
qed (use assms in auto)
finally show "|span B| =o cmax |B| |UNIV :: 'a set|" .
qed
end