Theory CZH_DG_CAT
section‹‹CAT› as a digraph\label{sec:dg_CAT}›
theory CZH_DG_CAT
imports
CZH_ECAT_Functor
CZH_ECAT_Small_Category
begin
subsection‹Background›
text‹
‹CAT› is usually defined as a category of categories and functors
(e.g., see Chapter I-2 in \<^cite>‹"mac_lane_categories_2010"›).
However, there is little that can prevent one from exposing ‹CAT›
as a digraph and provide additional structure gradually in
subsequent theories.
Thus, in this section, ‹α›-‹CAT› is defined as a digraph of categories
and functors in the set ‹V⇩α›, and ‹α›-‹Cat› is defined
as a digraph of tiny categories and tiny functors in ‹V⇩α›.
›
named_theorems dg_CAT_simps
named_theorems dg_CAT_intros
subsection‹Definition and elementary properties›
definition dg_CAT :: "V ⇒ V"
where "dg_CAT α =
[
set {ℭ. category α ℭ},
all_cfs α,
(λ𝔉∈⇩∘all_cfs α. 𝔉⦇HomDom⦈),
(λ𝔉∈⇩∘all_cfs α. 𝔉⦇HomCod⦈)
]⇩∘"
text‹Components.›
lemma dg_CAT_components:
shows "dg_CAT α⦇Obj⦈ = set {ℭ. category α ℭ}"
and "dg_CAT α⦇Arr⦈ = all_cfs α"
and "dg_CAT α⦇Dom⦈ = (λ𝔉∈⇩∘all_cfs α. 𝔉⦇HomDom⦈)"
and "dg_CAT α⦇Cod⦈ = (λ𝔉∈⇩∘all_cfs α. 𝔉⦇HomCod⦈)"
unfolding dg_CAT_def dg_field_simps by (simp_all add: nat_omega_simps)
subsection‹Object›
lemma dg_CAT_ObjI:
assumes "category α 𝔄"
shows "𝔄 ∈⇩∘ dg_CAT α⦇Obj⦈"
using assms unfolding dg_CAT_components by auto
lemma dg_CAT_ObjD:
assumes "𝔄 ∈⇩∘ dg_CAT α⦇Obj⦈"
shows "category α 𝔄"
using assms unfolding dg_CAT_components by auto
lemma dg_CAT_ObjE:
assumes "𝔄 ∈⇩∘ dg_CAT α⦇Obj⦈"
obtains "category α 𝔄"
using assms unfolding dg_CAT_components by auto
lemma dg_CAT_Obj_iff[dg_CAT_simps]: "𝔄 ∈⇩∘ dg_CAT α⦇Obj⦈ ⟷ category α 𝔄"
unfolding dg_CAT_components by auto
subsection‹Domain and codomain›
lemma [dg_CAT_simps]:
assumes "𝔉 ∈⇩∘ all_cfs α"
shows dg_CAT_Dom_app: "dg_CAT α⦇Dom⦈⦇𝔉⦈ = 𝔉⦇HomDom⦈"
and dg_CAT_Cod_app: "dg_CAT α⦇Cod⦈⦇𝔉⦈ = 𝔉⦇HomCod⦈"
using assms unfolding dg_CAT_components by auto
subsection‹‹CAT› is a digraph›
lemma (in 𝒵) tiny_category_dg_CAT:
assumes "𝒵 β" and "α ∈⇩∘ β"
shows "tiny_digraph β (dg_CAT α)"
proof(intro tiny_digraphI)
interpret β: 𝒵 β by (rule assms(1))
show "vfsequence (dg_CAT α)" unfolding dg_CAT_def by simp
show "vcard (dg_CAT α) = 4⇩ℕ"
unfolding dg_CAT_def by (simp add: nat_omega_simps)
show "ℛ⇩∘ (dg_CAT α⦇Dom⦈) ⊆⇩∘ dg_CAT α⦇Obj⦈"
proof(intro vsubsetI)
fix 𝔄 assume "𝔄 ∈⇩∘ ℛ⇩∘ (dg_CAT α⦇Dom⦈)"
then obtain 𝔉 where "𝔉 ∈⇩∘ all_cfs α" and "𝔄 = 𝔉⦇HomDom⦈"
unfolding dg_CAT_components by auto
then obtain 𝔅 𝔉 where "𝔉 : 𝔄 ↦↦⇩C⇘α⇙ 𝔅"
unfolding dg_CAT_components by auto
then interpret is_functor α 𝔄 𝔅 𝔉 by simp
show "𝔄 ∈⇩∘ dg_CAT α⦇Obj⦈"
by (simp add: dg_CAT_components HomDom.category_axioms)
qed
show "ℛ⇩∘ (dg_CAT α⦇Cod⦈) ⊆⇩∘ dg_CAT α⦇Obj⦈"
proof(intro vsubsetI)
fix 𝔅 assume "𝔅 ∈⇩∘ ℛ⇩∘ (dg_CAT α⦇Cod⦈)"
then obtain 𝔉 where "𝔉 ∈⇩∘ 𝒟⇩∘ (dg_CAT α⦇Cod⦈)" and "𝔅 = 𝔉⦇HomCod⦈"
unfolding dg_CAT_components by auto
then obtain 𝔄 𝔉
where 𝔉: "𝔉 : 𝔄 ↦↦⇩C⇘α⇙ 𝔅" and 𝔅_def: "𝔅 = 𝔉⦇HomCod⦈"
unfolding dg_CAT_components by auto
have "𝔅 = 𝔉⦇HomCod⦈" unfolding 𝔅_def by simp
interpret is_functor α 𝔄 𝔅 𝔉 by (rule 𝔉)
show "𝔅 ∈⇩∘ dg_CAT α⦇Obj⦈"
by (simp add: HomCod.category_axioms dg_CAT_components)
qed
show "dg_CAT α⦇Obj⦈ ∈⇩∘ Vset β"
unfolding dg_CAT_components by (rule categories_in_Vset[OF assms])
show "dg_CAT α⦇Arr⦈ ∈⇩∘ Vset β"
unfolding dg_CAT_components by (rule all_cfs_in_Vset[OF assms])
qed (simp_all add: assms dg_CAT_components)
subsection‹Arrow with a domain and a codomain›
lemma dg_CAT_is_arrI:
assumes "𝔉 : 𝔄 ↦↦⇩C⇘α⇙ 𝔅"
shows "𝔉 : 𝔄 ↦⇘dg_CAT α⇙ 𝔅"
proof(intro is_arrI, unfold dg_CAT_components(2))
interpret is_functor α 𝔄 𝔅 𝔉 by (rule assms)
from assms show "𝔉 ∈⇩∘ all_cfs α" by auto
with assms show "dg_CAT α⦇Dom⦈⦇𝔉⦈ = 𝔄" "dg_CAT α⦇Cod⦈⦇𝔉⦈ = 𝔅"
by (simp_all add: dg_CAT_components cat_cs_simps)
qed
lemma dg_CAT_is_arrD:
assumes "𝔉 : 𝔄 ↦⇘dg_CAT α⇙ 𝔅"
shows "𝔉 : 𝔄 ↦↦⇩C⇘α⇙ 𝔅"
using assms by (elim is_arrE) (auto simp: dg_CAT_components)
lemma dg_CAT_is_arrE:
assumes "𝔉 : 𝔄 ↦⇘dg_CAT α⇙ 𝔅"
obtains "𝔉 : 𝔄 ↦↦⇩C⇘α⇙ 𝔅"
using assms by (simp add: dg_CAT_is_arrD)
lemma dg_CAT_is_arr_iff[dg_CAT_simps]:
"𝔉 : 𝔄 ↦⇘dg_CAT α⇙ 𝔅 ⟷ 𝔉 : 𝔄 ↦↦⇩C⇘α⇙ 𝔅"
by (auto intro: dg_CAT_is_arrI dest: dg_CAT_is_arrD)
text‹\newpage›
end