Theory CZH_Sets_Sets
section‹Further set algebra and other miscellaneous results›
theory CZH_Sets_Sets
imports CZH_Sets_Introduction
begin
subsection‹Background›
text‹
This section presents further set algebra and various elementary properties
of sets.
Many of the results that are presented in this section
were carried over (with amendments) from the theories \<^text>‹Set›
and \<^text>‹Complete_Lattices› in the main library.
›
declare elts_sup_iff[simp del]
subsection‹Further notation›
subsubsection‹Set membership›
abbreviation vmember :: "V ⇒ V ⇒ bool" (‹(_/ ∈⇩∘ _)› [51, 51] 50)
where "vmember x A ≡ (x ∈ elts A)"
notation vmember (‹'(∈⇩∘')›)
and vmember (‹(_/ ∈⇩∘ _)› [51, 51] 50)
abbreviation not_vmember :: "V ⇒ V ⇒ bool" (‹(_/ ∉⇩∘ _)› [51, 51] 50)
where "not_vmember x A ≡ (x ∉ elts A)"
notation
not_vmember (‹'(∉⇩∘')›) and
not_vmember (‹(_/ ∉⇩∘ _)› [51, 51] 50)
subsubsection‹Subsets›
abbreviation vsubset :: "V ⇒ V ⇒ bool"
where "vsubset ≡ less"
abbreviation vsubset_eq :: "V ⇒ V ⇒ bool"
where "vsubset_eq ≡ less_eq"
notation vsubset (‹'(⊂⇩∘')›)
and vsubset (‹(_/ ⊂⇩∘ _)› [51, 51] 50)
and vsubset_eq (‹'(⊆⇩∘')›)
and vsubset_eq (‹(_/ ⊆⇩∘ _)› [51, 51] 50)
subsubsection‹Ball›
syntax
"_VBall" :: "pttrn ⇒ V ⇒ bool ⇒ bool" (‹(3∀(_/∈⇩∘_)./ _)› [0, 0, 10] 10)
"_VBex" :: "pttrn ⇒ V ⇒ bool ⇒ bool" (‹(3∃(_/∈⇩∘_)./ _)› [0, 0, 10] 10)
"_VBex1" :: "pttrn ⇒ V ⇒ bool ⇒ bool" (‹(3∃!(_/∈⇩∘_)./ _)› [0, 0, 10] 10)
syntax_consts
"_VBall" ⇌ Ball and
"_VBex" ⇌ Bex and
"_VBex1" ⇌ Ex1
translations
"∀x∈⇩∘A. P" ⇌ "CONST Ball (CONST elts A) (λx. P)"
"∃x∈⇩∘A. P" ⇌ "CONST Bex (CONST elts A) (λx. P)"
"∃!x∈⇩∘A. P" ⇀ "∃!x. x ∈⇩∘ A ∧ P"
subsubsection‹‹VLambda››
text‹The following notation was adapted from \<^cite>‹"paulson_hereditarily_2013"›.›
syntax "_vlam" :: "[pttrn, V, V] ⇒ V" (‹(3λ_∈⇩∘_./ _)› 10)
syntax_consts "_vlam" ⇌ VLambda
translations "λx∈⇩∘A. f" ⇌ "CONST VLambda A (λx. f)"
subsubsection‹Intersection and union›
abbreviation vintersection :: "V ⇒ V ⇒ V" (infixl ‹∩⇩∘› 70)
where "(∩⇩∘) ≡ (⊓)"
notation vintersection (infixl ‹∩⇩∘› 70)
abbreviation vunion :: "V ⇒ V ⇒ V" (infixl ‹∪⇩∘› 65)
where "vunion ≡ sup"
notation vunion (infixl ‹∪⇩∘› 65)
abbreviation VInter :: "V ⇒ V" (‹⋂⇩∘›)
where "⋂⇩∘ A ≡ ⨅ (elts A)"
notation VInter (‹⋂⇩∘›)
abbreviation VUnion :: "V ⇒ V" (‹⋃⇩∘›)
where "⋃⇩∘A ≡ ⨆ (elts A)"
notation VUnion (‹⋃⇩∘›)
subsubsection‹Miscellaneous›
notation app (‹_⦇_⦈› [999, 50] 999)
notation vtimes (infixr ‹×⇩∘› 80)
subsection‹Elementary results.›
lemma vempty_nin[simp]: "a ∉⇩∘ 0" by simp
lemma vemptyE:
assumes "A ≠ 0"
obtains x where "x ∈⇩∘ A"
using assms trad_foundation by auto
lemma in_set_CollectI:
assumes "P x" and "small {x. P x}"
shows "x ∈⇩∘ set {x. P x}"
using assms by simp
lemma small_setcompr2:
assumes "small {f x y | x y. P x y}" and "a ∈⇩∘ set {f x y | x y. P x y}"
obtains x' y' where "a = f x' y'" and "P x' y'"
using assms by auto
lemma in_small_setI:
assumes "small A" and "x ∈ A"
shows "x ∈⇩∘ set A"
using assms by simp
lemma in_small_setD:
assumes "x ∈⇩∘ set A" and "small A"
shows "x ∈ A"
using assms by simp
lemma in_small_setE:
assumes "a ∈⇩∘ set A" and "small A"
obtains "a ∈ A"
using assms by auto
lemma small_set_vsubset:
assumes "small A" and "A ⊆ elts B"
shows "set A ⊆⇩∘ B"
using assms by auto
lemma some_in_set_if_set_neq_vempty[simp]:
assumes "A ≠ 0"
shows "(SOME x. x ∈⇩∘ A) ∈⇩∘ A"
by (meson assms someI_ex vemptyE)
lemma small_vsubset_set[intro, simp]:
assumes "small B" and "A ⊆ B"
shows "set A ⊆⇩∘ set B"
using assms by (auto simp: subset_iff_less_eq_V)
lemma vset_neq_1:
assumes "b ∉⇩∘ A" and "a ∈⇩∘ A"
shows "b ≠ a"
using assms by auto
lemma vset_neq_2:
assumes "b ∈⇩∘ A" and "a ∉⇩∘ A"
shows "b ≠ a"
using assms by auto
lemma nin_vinsertI:
assumes "a ≠ b" and "a ∉⇩∘ A"
shows "a ∉⇩∘ vinsert b A"
using assms by clarsimp
lemma vsubset_if_subset:
assumes "elts A ⊆ elts B"
shows "A ⊆⇩∘ B"
using assms by auto
lemma small_set_comprehension[simp]: "small {A i | i. i ∈⇩∘ I}"
proof(rule smaller_than_small)
show "small (A ` elts I)" by auto
qed auto
subsection‹‹VBall››
lemma vball_cong:
assumes "A = B" and "⋀x. x ∈⇩∘ B ⟹ P x ⟷ Q x"
shows "(∀x∈⇩∘A. P x) ⟷ (∀x∈⇩∘B. Q x)"
by (simp add: assms)
lemma vball_cong_simp[cong]:
assumes "A = B" and "⋀x. x ∈⇩∘ B =simp=> P x ⟷ Q x "
shows "(∀x∈⇩∘A. P x) ⟷ (∀x∈⇩∘B. Q x)"
using assms by (simp add: simp_implies_def)
subsection‹‹VBex››
lemma vbex_cong:
assumes "A = B" and "⋀x. x ∈⇩∘ B ⟹ P x ⟷ Q x"
shows "(∃x∈⇩∘A. P x) ⟷ (∃x∈⇩∘B. Q x)"
using assms by (simp cong: conj_cong)
lemma vbex_cong_simp[cong]:
assumes "A = B" and "⋀x. x ∈⇩∘ B =simp=> P x ⟷ Q x "
shows "(∃x∈⇩∘A. P x) ⟷ (∃x∈⇩∘B. Q x)"
using assms by (simp add: simp_implies_def)
subsection‹Subset›
text‹Rules.›
lemma vsubset_antisym:
assumes "A ⊆⇩∘ B" and "B ⊆⇩∘ A"
shows "A = B"
using assms by simp
lemma vsubsetI:
assumes "⋀x. x ∈⇩∘ A ⟹ x ∈⇩∘ B"
shows "A ⊆⇩∘ B"
using assms by auto
lemma vpsubsetI:
assumes "A ⊆⇩∘ B" and "x ∉⇩∘ A" and "x ∈⇩∘ B"
shows "A ⊂⇩∘ B"
using assms unfolding less_V_def by auto
lemma vsubsetD:
assumes "A ⊆⇩∘ B"
shows "⋀x. x ∈⇩∘ A ⟹ x ∈⇩∘ B"
using assms by auto
lemma vsubsetE:
assumes "A ⊆⇩∘ B" and "(⋀x. x ∈⇩∘ A ⟹ x ∈⇩∘ B) ⟹ P"
shows P
using assms by auto
lemma vpsubsetE:
assumes "A ⊂⇩∘ B"
obtains x where "A ⊆⇩∘ B" and "x ∉⇩∘ A" and "x ∈⇩∘ B"
using assms unfolding less_V_def by (meson V_equalityI vsubsetE)
lemma vsubset_iff: "A ⊆⇩∘ B ⟷ (∀t. t ∈⇩∘ A ⟶ t ∈⇩∘ B)" by blast
text‹Elementary properties.›
lemma vsubset_eq: "A ⊆⇩∘ B ⟷ (∀x∈⇩∘A. x ∈⇩∘ B)" by auto
lemma vsubset_transitive[intro]:
assumes "A ⊆⇩∘ B" and "B ⊆⇩∘ C"
shows "A ⊆⇩∘ C"
using assms by simp
lemma vsubset_reflexive: "A ⊆⇩∘ A" by simp
text‹Set operations.›
lemma vsubset_vempty: "0 ⊆⇩∘ A" by simp
lemma vsubset_vsingleton_left: "set {a} ⊆⇩∘ A ⟷ a ∈⇩∘ A" by auto
lemmas vsubset_vsingleton_leftD[dest] = vsubset_vsingleton_left[THEN iffD1]
and vsubset_vsingleton_leftI[intro] = vsubset_vsingleton_left[THEN iffD2]
lemma vsubset_vsingleton_right: "A ⊆⇩∘ set {a} ⟷ A = set {a} ∨ A = 0"
by (auto intro!: vsubset_antisym)
lemmas vsubset_vsingleton_rightD[dest] = vsubset_vsingleton_right[THEN iffD1]
and vsubset_vsingleton_rightI[intro] = vsubset_vsingleton_right[THEN iffD2]
lemma vsubset_vdoubleton_leftD[dest]:
assumes "set {a, b} ⊆⇩∘ A"
shows "a ∈⇩∘ A" and "b ∈⇩∘ A"
using assms by auto
lemma vsubset_vdoubleton_leftI[intro]:
assumes "a ∈⇩∘ A" and "b ∈⇩∘ A"
shows "set {a, b} ⊆⇩∘ A"
using assms by auto
lemma vsubset_vinsert_leftD[dest]:
assumes "vinsert a A ⊆⇩∘ B"
shows "A ⊆⇩∘ B"
using assms by auto
lemma vsubset_vinsert_leftI[intro]:
assumes "A ⊆⇩∘ B" and "a ∈⇩∘ B"
shows "vinsert a A ⊆⇩∘ B"
using assms by auto
lemma vsubset_vinsert_vinsertI[intro]:
assumes "A ⊆⇩∘ vinsert b B"
shows "vinsert b A ⊆⇩∘ vinsert b B"
using assms by auto
lemma vsubset_vinsert_rightI[intro]:
assumes "A ⊆⇩∘ B"
shows "A ⊆⇩∘ vinsert b B"
using assms by auto
lemmas vsubset_VPow = VPow_le_VPow_iff
lemmas vsubset_VPowD = vsubset_VPow[THEN iffD1]
and vsubset_VPowI = vsubset_VPow[THEN iffD2]
text‹Special properties.›
lemma vsubset_contraD:
assumes "A ⊆⇩∘ B" and "c ∉⇩∘ B"
shows "c ∉⇩∘ A"
using assms by auto
subsection‹Equality›
text‹Rules.›
lemma vequalityD1:
assumes "A = B"
shows "A ⊆⇩∘ B"
using assms by simp
lemma vequalityD2:
assumes "A = B"
shows "B ⊆⇩∘ A"
using assms by simp
lemma vequalityE:
assumes "A = B" and "⟦ A ⊆⇩∘ B; B ⊆⇩∘ A ⟧ ⟹ P"
shows P
using assms by simp
lemma vequalityCE[elim]:
assumes "A = B" and "⟦ c ∈⇩∘ A; c ∈⇩∘ B ⟧ ⟹ P" and "⟦ c ∉⇩∘ A; c ∉⇩∘ B ⟧ ⟹ P"
shows P
using assms by auto
subsection‹Binary intersection›
lemma vintersection_def: "A ∩⇩∘ B = set {x. x ∈⇩∘ A ∧ x ∈⇩∘ B}"
by (metis Int_def inf_V_def)
lemma small_vintersection_set[simp]: "small {x. x ∈⇩∘ A ∧ x ∈⇩∘ B}"
by (rule down[of _ A]) auto
text‹Rules.›
lemma vintersection_iff[simp]: "x ∈⇩∘ A ∩⇩∘ B ⟷ x ∈⇩∘ A ∧ x ∈⇩∘ B"
unfolding vintersection_def by simp
lemma vintersectionI[intro!]:
assumes "x ∈⇩∘ A" and "x ∈⇩∘ B"
shows "x ∈⇩∘ A ∩⇩∘ B"
using assms by simp
lemma vintersectionD1[dest]:
assumes "x ∈⇩∘ A ∩⇩∘ B"
shows "x ∈⇩∘ A"
using assms by simp
lemma vintersectionD2[dest]:
assumes "x ∈⇩∘ A ∩⇩∘ B"
shows "x ∈⇩∘ B"
using assms by simp
lemma vintersectionE[elim!]:
assumes "x ∈⇩∘ A ∩⇩∘ B" and "x ∈⇩∘ A ⟹ x ∈⇩∘ B ⟹ P"
shows P
using assms by simp
text‹Elementary properties.›
lemma vintersection_intersection: "A ∩⇩∘ B = set (elts A ∩ elts B)"
unfolding inf_V_def by simp
lemma vintersection_assoc: "A ∩⇩∘ (B ∩⇩∘ C) = (A ∩⇩∘ B) ∩⇩∘ C" by auto
lemma vintersection_commute: "A ∩⇩∘ B = B ∩⇩∘ A" by auto
text‹Previous set operations.›
lemma vsubset_vintersection_right: "A ⊆⇩∘ (B ∩⇩∘ C) = (A ⊆⇩∘ B ∧ A ⊆⇩∘ C)"
by clarsimp
lemma vsubset_vintersection_rightD[dest]:
assumes "A ⊆⇩∘ (B ∩⇩∘ C)"
shows "A ⊆⇩∘ B" and "A ⊆⇩∘ C"
using assms by auto
lemma vsubset_vintersection_rightI[intro]:
assumes "A ⊆⇩∘ B" and "A ⊆⇩∘ C"
shows "A ⊆⇩∘ (B ∩⇩∘ C)"
using assms by auto
text‹Set operations.›
lemma vintersection_vempty: "0 ⊆⇩∘ A" by simp
lemma vintersection_vsingleton: "a ∈⇩∘ set {a}" by simp
lemma vintersection_vdoubleton: "a ∈⇩∘ set {a, b}" and "b ∈⇩∘ set {a, b}"
by simp_all
lemma vintersection_VPow[simp]: "VPow (A ∩⇩∘ B) = VPow A ∩⇩∘ VPow B" by auto
text‹Special properties.›
lemma vintersection_function_mono:
assumes "mono f"
shows "f (A ∩⇩∘ B) ⊆⇩∘ f A ∩⇩∘ f B"
using assms by (fact mono_inf)
subsection‹Binary union›
lemma small_vunion_set: "small {x. x ∈⇩∘ A ∨ x ∈⇩∘ B}"
by (rule down[of _ ‹A ∪⇩∘ B›]) (auto simp: elts_sup_iff)
text‹Rules.›
lemma vunion_def: "A ∪⇩∘ B = set {x. x ∈⇩∘ A ∨ x ∈⇩∘ B}"
unfolding Un_def sup_V_def by simp
lemma vunion_iff[simp]: "x ∈⇩∘ A ∪⇩∘ B ⟷ x ∈⇩∘ A ∨ x ∈⇩∘ B"
by (simp add: elts_sup_iff)
lemma vunionI1:
assumes "a ∈⇩∘ A"
shows "a ∈⇩∘ A ∪⇩∘ B"
using assms by simp
lemma vunionI2:
assumes "a ∈⇩∘ B"
shows "a ∈⇩∘ A ∪⇩∘ B"
using assms by simp
lemma vunionCI[intro!]:
assumes "x ∉⇩∘ B ⟹ x ∈⇩∘ A"
shows "x ∈⇩∘ A ∪⇩∘ B"
using assms by clarsimp
lemma vunionE[elim!]:
assumes "x ∈⇩∘ A ∪⇩∘ B" and "x ∈⇩∘ A ⟹ P" and "x ∈⇩∘ B ⟹ P"
shows P
using assms by auto
text‹Elementary properties.›
lemma vunion_union: "A ∪⇩∘ B = set (elts A ∪ elts B)" by auto
lemma vunion_assoc: "A ∪⇩∘ (B ∪⇩∘ C) = (A ∪⇩∘ B) ∪⇩∘ C" by auto
lemma vunion_commute: "A ∪⇩∘ B = B ∪⇩∘ A" by auto
text‹Previous set operations.›
lemma vsubset_vunion_left: "(A ∪⇩∘ B) ⊆⇩∘ C ⟷ (A ⊆⇩∘ C ∧ B ⊆⇩∘ C)" by simp
lemma vsubset_vunion_leftD[dest]:
assumes "(A ∪⇩∘ B) ⊆⇩∘ C"
shows "A ⊆⇩∘ C" and "B ⊆⇩∘ C"
using assms by auto
lemma vsubset_vunion_leftI[intro]:
assumes "A ⊆⇩∘ C" and "B ⊆⇩∘ C"
shows "(A ∪⇩∘ B) ⊆⇩∘ C"
using assms by auto
lemma vintersection_vunion_left: "(A ∪⇩∘ B) ∩⇩∘ C = (A ∩⇩∘ C) ∪⇩∘ (B ∩⇩∘ C)"
by auto
lemma vintersection_vunion_right: "A ∩⇩∘ (B ∪⇩∘ C) = (A ∩⇩∘ B) ∪⇩∘ (A ∩⇩∘ C)"
by auto
text‹Set operations.›
lemmas vunion_vempty_left = sup_V_0_left
and vunion_vempty_right = sup_V_0_right
lemma vunion_vsingleton[simp]: "set {a} ∪⇩∘ A = vinsert a A" by auto
lemma vunion_vdoubleton[simp]: "set {a, b} ∪⇩∘ A = vinsert a (vinsert b A)"
by auto
lemma vunion_vinsert_comm_left:
"(vinsert a A) ∪⇩∘ B = A ∪⇩∘ (vinsert a B)"
by auto
lemma vunion_vinsert_comm_right:
"A ∪⇩∘ (vinsert a B) = (vinsert a A) ∪⇩∘ B"
by auto
lemma vinsert_def: "vinsert y B = set {x. x = y} ∪⇩∘ B" by auto
lemma vunion_vinsert_left: "(vinsert a A) ∪⇩∘ B = vinsert a (A ∪⇩∘ B)" by auto
lemma vunion_vinsert_right: "A ∪⇩∘ (vinsert a B) = vinsert a (A ∪⇩∘ B)" by auto
text‹Special properties.›
lemma vunion_fun_mono:
assumes "mono f"
shows "f A ∪⇩∘ f B ⊆⇩∘ f (A ∪⇩∘ B)"
using assms by (fact mono_sup)
subsection‹Set difference›
definition vdiff :: "V ⇒ V ⇒ V" (infixl ‹-⇩∘› 65)
where "A -⇩∘ B = set {x. x ∈⇩∘ A ∧ x ∉⇩∘ B}"
notation vdiff (infixl ‹-⇩∘› 65)
lemma small_set_vdiff[simp]: "small {x. x ∈⇩∘ A ∧ x ∉⇩∘ B}"
by (rule down[of _ A]) simp
text‹Rules.›
lemma vdiff_iff[simp]: "x ∈⇩∘ A -⇩∘ B ⟷ x ∈⇩∘ A ∧ x ∉⇩∘ B"
unfolding vdiff_def by simp
lemma vdiffI[intro!]:
assumes "x ∈⇩∘ A" and "x ∉⇩∘ B"
shows "x ∈⇩∘ A -⇩∘ B"
using assms by simp
lemma vdiffD1:
assumes "x ∈⇩∘ A -⇩∘ B"
shows "x ∈⇩∘ A"
using assms by simp
lemma vdiffD2:
assumes "x ∈⇩∘ A -⇩∘ B" and "x ∈⇩∘ B"
shows P
using assms by simp
lemma vdiffE[elim!]:
assumes "x ∈⇩∘ A -⇩∘ B" and "⟦ x ∈⇩∘ A; x ∉⇩∘ B ⟧ ⟹ P"
shows P
using assms by simp
text‹Previous set operations.›
lemma vsubset_vdiff:
assumes "A ⊆⇩∘ B -⇩∘ C"
shows "A ⊆⇩∘ B"
using assms by auto
lemma vinsert_vdiff_nin[simp]:
assumes "a ∉⇩∘ B"
shows "vinsert a (A -⇩∘ B) = vinsert a A -⇩∘ B"
using assms by auto
text‹Set operations.›
lemma vdiff_vempty_left[simp]: "0 -⇩∘ A = 0" by auto
lemma vdiff_vempty_right[simp]: "A -⇩∘ 0 = A" by auto
lemma vdiff_vsingleton_vinsert[simp]: "set {a} -⇩∘ vinsert a A = 0" by auto
lemma vdiff_vsingleton_in[simp]:
assumes "a ∈⇩∘ A"
shows "set {a} -⇩∘ A = 0"
using assms by auto
lemma vdiff_vsingleton_nin[simp]:
assumes "a ∉⇩∘ A"
shows "set {a} -⇩∘ A = set {a}"
using assms by auto
lemma vdiff_vinsert_vsingleton[simp]: "vinsert a A -⇩∘ set {a} = A -⇩∘ set {a}"
by auto
lemma vdiff_vsingleton[simp]:
assumes "a ∉⇩∘ A"
shows "A -⇩∘ set {a} = A"
using assms by auto
lemma vdiff_vsubset:
assumes "A ⊆⇩∘ B" and "D ⊆⇩∘ C"
shows "A -⇩∘ C ⊆⇩∘ B -⇩∘ D"
using assms by auto
lemma vdiff_vinsert_left_in[simp]:
assumes "a ∈⇩∘ B"
shows "(vinsert a A) -⇩∘ B = A -⇩∘ B"
using assms by auto
lemma vdiff_vinsert_left_nin:
assumes "a ∉⇩∘ B"
shows "(vinsert a A) -⇩∘ B = vinsert a (A -⇩∘ B)"
using assms by auto
lemma vdiff_vinsert_right_in: "A -⇩∘ (vinsert a B) = A -⇩∘ B -⇩∘ set {a}" by auto
lemma vdiff_vinsert_right_nin[simp]:
assumes "a ∉⇩∘ A"
shows "A -⇩∘ (vinsert a B) = A -⇩∘ B"
using assms by auto
lemma vdiff_vintersection_left: "(A ∩⇩∘ B) -⇩∘ C = (A -⇩∘ C) ∩⇩∘ (B -⇩∘ C)" by auto
lemma vdiff_vunion_left: "(A ∪⇩∘ B) -⇩∘ C = (A -⇩∘ C) ∪⇩∘ (B -⇩∘ C)" by auto
text‹Special properties.›
lemma complement_vsubset: "I -⇩∘ J ⊆⇩∘ I" by auto
lemma vintersection_complement: "(I -⇩∘ J) ∩⇩∘ J = 0" by auto
lemma vunion_complement:
assumes "J ⊆⇩∘ I"
shows "I -⇩∘ J ∪⇩∘ J = I"
using assms by auto
subsection‹Augmenting a set with an element›
lemma vinsert_compr: "vinsert y A = set {x. x = y ∨ x ∈⇩∘ A}"
unfolding vunion_def vinsert_def by simp_all
text‹Rules.›
lemma vinsert_iff[simp]: "x ∈⇩∘ vinsert y A ⟷ x = y ∨ x ∈⇩∘ A" by simp
lemma vinsertI1: "x ∈⇩∘ vinsert x A" by simp
lemma vinsertI2:
assumes "x ∈⇩∘ A"
shows "x ∈⇩∘ vinsert y A"
using assms by simp
lemma vinsertE1[elim!]:
assumes "x ∈⇩∘ vinsert y A" and "x = y ⟹ P" and "x ∈⇩∘ A ⟹ P"
shows P
using assms unfolding vinsert_def by auto
lemma vinsertCI[intro!]:
assumes "x ∉⇩∘ A ⟹ x = y"
shows "x ∈⇩∘ vinsert y A"
using assms by clarsimp
text‹Elementary properties.›
lemma vinsert_insert: "vinsert a A = set (insert a (elts A))" by auto
lemma vinsert_commute: "vinsert a (vinsert b C) = vinsert b (vinsert a C)"
by auto
lemma vinsert_ident:
assumes "x ∉⇩∘ A" and "x ∉⇩∘ B"
shows "vinsert x A = vinsert x B ⟷ A = B"
using assms by force
lemmas vinsert_identD[dest] = vinsert_ident[THEN iffD1, rotated 2]
and vinsert_identI[intro] = vinsert_ident[THEN iffD2]
text‹Set operations.›
lemma vinsert_vempty: "vinsert a 0 = set {a}" by auto
lemma vinsert_vsingleton: "vinsert a (set {b}) = set {a, b}" by auto
lemma vinsert_vdoubleton: "vinsert a (set {b, c}) = set {a, b, c}" by auto
lemma vinsert_vinsert: "vinsert a (vinsert b C) = set {a, b} ∪⇩∘ C" by auto
lemma vinsert_vunion_left: "vinsert a (A ∪⇩∘ B) = vinsert a A ∪⇩∘ B" by auto
lemma vinsert_vunion_right: "vinsert a (A ∪⇩∘ B) = A ∪⇩∘ vinsert a B" by auto
lemma vinsert_vintersection: "vinsert a (A ∩⇩∘ B) = vinsert a A ∩⇩∘ vinsert a B"
by auto
text‹Special properties.›
lemma vinsert_set_insert_empty_anyI:
assumes "P (vinsert a 0)"
shows "P (set (insert a {}))"
using assms by (simp add: vinsert_def)
lemma vinsert_set_insert_anyI:
assumes "small B" and "P (vinsert a (set (insert b B)))"
shows "P (set (insert a (insert b B)))"
using assms by (simp add: ZFC_in_HOL.vinsert_def)
lemma vinsert_set_insert_eq:
assumes "small B"
shows "set (insert a (insert b B)) = vinsert a (set (insert b B))"
using assms by (simp add: ZFC_in_HOL.vinsert_def)
lemma vsubset_vinsert:
"A ⊆⇩∘ vinsert x B ⟷ (if x ∈⇩∘ A then A -⇩∘ set {x} ⊆⇩∘ B else A ⊆⇩∘ B)"
by auto
lemma vinsert_obtain_ne:
assumes "A ≠ 0"
obtains a A' where "A = vinsert a A'" and "a ∉⇩∘ A'"
proof-
from assms mem_not_refl obtain a where "a ∈⇩∘ A"
by (auto intro!: vsubset_antisym)
with ‹a ∈⇩∘ A› have "A = vinsert a (A -⇩∘ set {a})" by auto
then show ?thesis using that by auto
qed
subsection‹Power set›
text‹Rules.›
lemma VPowI:
assumes "A ⊆⇩∘ B"
shows "A ∈⇩∘ VPow B"
using assms by simp
lemma VPowD:
assumes "A ∈⇩∘ VPow B"
shows "A ⊆⇩∘ B"
using assms by (simp add: Pow_def)
lemma VPowE[elim]:
assumes "A ∈⇩∘ VPow B" and "A ⊆⇩∘ B ⟹ P"
shows P
using assms by auto
text‹Elementary properties.›
lemma VPow_bottom: "0 ∈⇩∘ VPow B" by simp
lemma VPow_top: "A ∈⇩∘ VPow A" by simp
text‹Set operations.›
lemma VPow_vempty[simp]: "VPow 0 = set {0}" by auto
lemma VPow_vsingleton[simp]: "VPow (set {a}) = set {0, set {a}}"
by (rule vsubset_antisym; rule vsubsetI) auto
lemma VPow_not_vempty: "VPow A ≠ 0" by auto
lemma VPow_mono:
assumes "A ⊆⇩∘ B"
shows "VPow A ⊆⇩∘ VPow B"
using assms by simp
lemma VPow_vunion_subset: "VPow A ∪⇩∘ VPow B ⊆⇩∘ VPow (A ∪⇩∘ B)" by simp
subsection‹Singletons, using insert›
text‹Rules.›
lemma vsingletonI[intro!]: "x ∈⇩∘ set {x}" by auto
lemma vsingletonD[dest!]:
assumes "y ∈⇩∘ set {x}"
shows "y = x"
using assms by auto
lemma vsingleton_iff: "y ∈⇩∘ set {x} ⟷ y = x" by simp
text‹Previous set operations.›
lemma VPow_vdoubleton[simp]:
"VPow (set {a, b}) = set {0, set {a}, set {b}, set {a, b}}"
by (intro vsubset_antisym vsubsetI)
(auto intro!: vsubset_antisym simp: vinsert_set_insert_eq)
lemma vsubset_vinsertI:
assumes "A -⇩∘ set {x} ⊆⇩∘ B"
shows "A ⊆⇩∘ vinsert x B"
using assms by auto
text‹Special properties.›
lemma vsingleton_inject:
assumes "set {x} = set {y}"
shows "x = y"
using assms by simp
lemma vsingleton_insert_inj_eq[iff]:
"set {y} = vinsert x A ⟷ x = y ∧ A ⊆⇩∘ set {y}"
by auto
lemma vsingleton_insert_inj_eq'[iff]:
"vinsert x A = set {y} ⟷ x = y ∧ A ⊆⇩∘ set {y}"
by auto
lemma vsubset_vsingletonD:
assumes "A ⊆⇩∘ set {x}"
shows "A = 0 ∨ A = set {x}"
using assms by auto
lemma vsubset_vsingleton_iff: "a ⊆⇩∘ set {x} ⟷ a = 0 ∨ a = set {x}" by auto
lemma vsubset_vdiff_vinsert: "A ⊆⇩∘ B -⇩∘ vinsert x C ⟷ A ⊆⇩∘ B -⇩∘ C ∧ x ∉⇩∘ A"
by auto
lemma vunion_vsingleton_iff:
"A ∪⇩∘ B = set {x} ⟷
A = 0 ∧ B = set {x} ∨ A = set {x} ∧ B = 0 ∨ A = set {x} ∧ B = set {x}"
by
(
metis
vsubset_vsingletonD inf_sup_ord(4) sup.idem sup_V_0_right sup_commute
)
lemma vsingleton_Un_iff:
"set {x} = A ∪⇩∘ B ⟷
A = 0 ∧ B = set {x} ∨ A = set {x} ∧ B = 0 ∨ A = set {x} ∧ B = set {x}"
by (metis vunion_vsingleton_iff sup_V_0_left sup_V_0_right sup_idem)
lemma VPow_vsingleton_iff[simp]: "VPow X = set {Y} ⟷ X = 0 ∧ Y = 0"
by (auto intro!: vsubset_antisym)
subsection‹Intersection of elements›
lemma small_VInter[simp]:
assumes "A ≠ 0"
shows "small {a. ∀x ∈⇩∘ A. a ∈⇩∘ x}"
by (metis (no_types, lifting) assms down eq0_iff mem_Collect_eq subsetI)
lemma VInter_def: "⋂⇩∘ A = (if A = 0 then 0 else set {a. ∀x ∈⇩∘ A. a ∈⇩∘ x})"
proof(cases ‹A = 0›)
case True show ?thesis unfolding True Inf_V_def by simp
next
case False
from False have "(⋂ (elts ` elts A)) = {a. ∀x ∈⇩∘ A. a ∈⇩∘ x}" by auto
with False show ?thesis unfolding Inf_V_def by auto
qed
text‹Rules.›
lemma VInter_iff[simp]:
assumes [simp]: "A ≠ 0"
shows "a ∈⇩∘ ⋂⇩∘ A ⟷ (∀x∈⇩∘A. a ∈⇩∘ x)"
unfolding VInter_def by auto
lemma VInterI[intro]:
assumes "A ≠ 0" and "⋀x. x ∈⇩∘ A ⟹ a ∈⇩∘ x"
shows "a ∈⇩∘ ⋂⇩∘ A"
using assms by auto
lemma VInter0I[intro]:
assumes "A = 0"
shows "⋂⇩∘ A = 0"
using assms unfolding VInter_def by simp
lemma VInterD[dest]:
assumes "a ∈⇩∘ ⋂⇩∘ A" and "x ∈⇩∘ A"
shows "a ∈⇩∘ x"
using assms by (cases ‹A = 0›) auto
lemma VInterE1[elim]:
assumes "a ∈⇩∘ ⋂⇩∘ A" and "x ∉⇩∘ A ⟹ R" and "a ∈⇩∘ x ⟹ R"
shows R
using assms elts_0 unfolding Inter_eq by blast
lemma VInterE2[elim]:
assumes "a ∈⇩∘ ⋂⇩∘ A"
obtains x where "a ∈⇩∘ x" and "x ∈⇩∘ A"
proof(cases ‹A = 0›)
show "(⋀x. a ∈⇩∘ x ⟹ x ∈⇩∘ A ⟹ thesis) ⟹ A = 0 ⟹ thesis"
using assms unfolding Inf_V_def by auto
show "(⋀x. a ∈⇩∘ x ⟹ x ∈⇩∘ A ⟹ thesis) ⟹ A ≠ 0 ⟹ thesis"
using assms by (meson assms VInterE1 that trad_foundation)
qed
lemma VInterE3:
assumes "a ∈⇩∘ ⋂⇩∘ A" and "(⋀y. y ∈⇩∘ A ⟹ a ∈⇩∘ y) ⟹ P"
shows P
using assms by auto
text‹Elementary properties.›
lemma VInter_Inter: "⋂⇩∘ A = set (⋂ (elts ` (elts A)))"
by (simp add: Inf_V_def ext)
lemma VInter_eq:
assumes [simp]: "A ≠ 0"
shows "⋂⇩∘ A = set {a. ∀x ∈⇩∘ A. a ∈⇩∘ x}"
unfolding VInter_def by auto
text‹Set operations.›
lemma VInter_vempty[simp]: "⋂⇩∘ 0 = 0" using VInter0I by auto
lemma VInf_vempty[simp]: "⨅{} = (0::V)" by (simp add: Inf_V_def)
lemma VInter_vdoubleton: "⋂⇩∘ (set {a, b}) = a ∩⇩∘ b"
proof(intro vsubset_antisym vsubsetI)
show "x ∈⇩∘ ⋂⇩∘ (set {a, b}) ⟹ x ∈⇩∘ a ∩⇩∘ b" for x by (elim VInterE3) auto
show "x ∈⇩∘ a ∩⇩∘ b ⟹ x ∈⇩∘ ⋂⇩∘ (set {a, b})" for x by (intro VInterI) force+
qed
lemma VInter_antimono:
assumes "B ≠ 0" and "B ⊆⇩∘ A"
shows "⋂⇩∘ A ⊆⇩∘ ⋂⇩∘ B"
using assms by blast
lemma VInter_vsubset:
assumes "⋀x. x ∈⇩∘ A ⟹ x ⊆⇩∘ B" and "A ≠ 0"
shows "⋂⇩∘ A ⊆⇩∘ B"
using assms by auto
lemma VInter_vinsert:
assumes "A ≠ 0"
shows "⋂⇩∘ (vinsert a A) = a ∩⇩∘ ⋂⇩∘ A"
using assms by (blast intro!: vsubset_antisym)
lemma VInter_vunion:
assumes "A ≠ 0" and "B ≠ 0"
shows "⋂⇩∘(A ∪⇩∘ B) = ⋂⇩∘A ∩⇩∘ ⋂⇩∘B"
using assms by (blast intro!: vsubset_antisym)
lemma VInter_vintersection:
assumes "A ∩⇩∘ B ≠ 0"
shows "⋂⇩∘ A ∪⇩∘ ⋂⇩∘ B ⊆⇩∘ ⋂⇩∘ (A ∩⇩∘ B)"
using assms by auto
lemma VInter_VPow: "⋂⇩∘ (VPow A) ⊆⇩∘ VPow (⋂⇩∘ A)" by auto
text‹Elementary properties.›
lemma VInter_lower:
assumes "x ∈⇩∘ A"
shows "⋂⇩∘ A ⊆⇩∘ x"
using assms by auto
lemma VInter_greatest:
assumes "A ≠ 0" and "⋀x. x ∈⇩∘ A ⟹ B ⊆⇩∘ x"
shows "B ⊆⇩∘ ⋂⇩∘ A"
using assms by auto
subsection‹Union of elements›
lemma Union_eq_VUnion: "⋃(elts ` elts A) = {a. ∃x ∈⇩∘ A. a ∈⇩∘ x}" by auto
lemma small_VUnion[simp]: "small {a. ∃x ∈⇩∘ A. a ∈⇩∘ x}"
by (fold Union_eq_VUnion) simp
lemma VUnion_def: "⋃⇩∘A = set {a. ∃x ∈⇩∘ A. a ∈⇩∘ x}"
unfolding Sup_V_def by auto
text‹Rules.›
lemma VUnion_iff[simp]: "A ∈⇩∘ ⋃⇩∘C ⟷ (∃x∈⇩∘C. A ∈⇩∘ x)" by auto
lemma VUnionI[intro]:
assumes "x ∈⇩∘ A" and "a ∈⇩∘ x"
shows "a ∈⇩∘ ⋃⇩∘A"
using assms by auto
lemma VUnionE[elim!]:
assumes "a ∈⇩∘ ⋃⇩∘A" and "⋀x. a ∈⇩∘ x ⟹ x ∈⇩∘ A ⟹ R"
shows R
using assms by clarsimp
text‹Elementary properties.›
lemma VUnion_Union: "⋃⇩∘A = set (⋃ (elts ` (elts A)))"
by (simp add: Inf_V_def ext)
text‹Set operations.›
lemma VUnion_vempty[simp]: "⋃⇩∘0 = 0" by simp
lemma VUnion_vsingleton[simp]: "⋃⇩∘(set {a}) = a" by simp
lemma VUnion_vdoubleton[simp]: "⋃⇩∘(set {a, b}) = a ∪⇩∘ b" by auto
lemma VUnion_mono:
assumes "A ⊆⇩∘ B"
shows "⋃⇩∘A ⊆⇩∘ ⋃⇩∘B"
using assms by auto
lemma VUnion_vinsert: "⋃⇩∘(vinsert x A) = x ∪⇩∘ ⋃⇩∘A" by auto
lemma VUnion_vintersection: "⋃⇩∘(A ∩⇩∘ B) ⊆⇩∘ ⋃⇩∘A ∩⇩∘ ⋃⇩∘B" by auto
lemma VUnion_vunion[simp]: "⋃⇩∘(A ∪⇩∘ B) = ⋃⇩∘A ∪⇩∘ ⋃⇩∘B" by auto
lemma VUnion_VPow[simp]: "⋃⇩∘(VPow A) = A" by auto
text‹Special properties.›
lemma VUnion_vempty_conv_left: "0 = ⋃⇩∘A ⟷ (∀x∈⇩∘A. x = 0)" by auto
lemma VUnion_vempty_conv_right: "⋃⇩∘A = 0 ⟷ (∀x∈⇩∘A. x = 0)" by auto
lemma vsubset_VPow_VUnion: "A ⊆⇩∘ VPow (⋃⇩∘A)" by auto
lemma VUnion_vsubsetI:
assumes "⋀x. x ∈⇩∘ A ⟹ ∃y. y ∈⇩∘ B ∧ x ⊆⇩∘ y"
shows "⋃⇩∘A ⊆⇩∘ ⋃⇩∘B"
using assms by auto
lemma VUnion_upper:
assumes "x ∈⇩∘ A"
shows "x ⊆⇩∘ ⋃⇩∘A"
using assms by auto
lemma VUnion_least:
assumes "⋀x. x ∈⇩∘ A ⟹ x ⊆⇩∘ B"
shows "⋃⇩∘A ⊆⇩∘ B"
using assms by (fact Sup_least)
subsection‹Pairs›
subsubsection‹Further results›
lemma small_elts_of_set[simp, intro]:
assumes "small x"
shows "elts (set x) = x"
by (simp add: assms)
lemma small_vpair[intro, simp]:
assumes "small {a. P a}"
shows "small {⟨a, b⟩ | a. P a}"
by (subgoal_tac ‹{⟨a, b⟩ | a. P a} = (λa. ⟨a, b⟩) ` {a. P a}›)
(auto simp: assms)
subsubsection‹‹vpairs››
definition vpairs :: "V ⇒ V" where
"vpairs r = set {x. x ∈⇩∘ r ∧ (∃a b. x = ⟨a, b⟩)}"
lemma small_vpairs[simp]: "small {⟨a, b⟩ | a b. ⟨a, b⟩ ∈⇩∘ r}"
by (rule down[of _ r]) clarsimp
text‹Rules.›
lemma vpairsI[intro]:
assumes "x ∈⇩∘ r" and "x = ⟨a, b⟩"
shows "x ∈⇩∘ vpairs r"
using assms unfolding vpairs_def by auto
lemma vpairsD[dest]:
assumes "x ∈⇩∘ vpairs r"
shows "x ∈⇩∘ r" and "∃a b. x = ⟨a, b⟩"
using assms unfolding vpairs_def by auto
lemma vpairsE[elim]:
assumes "x ∈⇩∘ vpairs r"
obtains a b where "x = ⟨a, b⟩" and "⟨a, b⟩ ∈⇩∘ r"
using assms unfolding vpairs_def by auto
lemma vpairs_iff: "x ∈⇩∘ vpairs r ⟷ x ∈⇩∘ r ∧ (∃a b. x = ⟨a, b⟩)" by auto
text‹Elementary properties.›
lemma vpairs_iff_elts: "⟨a, b⟩ ∈⇩∘ vpairs r ⟷ ⟨a, b⟩ ∈⇩∘ r" by auto
lemma vpairs_iff_pairs: "⟨a, b⟩ ∈⇩∘ vpairs r ⟷ (a, b) ∈ pairs r"
by (simp add: vpairs_iff_elts pairs_iff_elts)
text‹Set operations.›
lemma vpairs_vempty[simp]: "vpairs 0 = 0" by auto
lemma vpairs_vsingleton[simp]: "vpairs (set {⟨a, b⟩}) = set {⟨a, b⟩}" by auto
lemma vpairs_vinsert: "vpairs (vinsert ⟨a, b⟩ A) = set {⟨a, b⟩} ∪⇩∘ vpairs A"
by auto
lemma vpairs_mono:
assumes "r ⊆⇩∘ s"
shows "vpairs r ⊆⇩∘ vpairs s"
using assms by blast
lemma vpairs_vunion: "vpairs (A ∪⇩∘ B) = vpairs A ∪⇩∘ vpairs B" by auto
lemma vpairs_vintersection: "vpairs (A ∩⇩∘ B) = vpairs A ∩⇩∘ vpairs B" by auto
lemma vpairs_vdiff: "vpairs (A -⇩∘ B) = vpairs A -⇩∘ vpairs B" by auto
text‹Special properties.›
lemma vpairs_ex_vfst:
assumes "x ∈⇩∘ vpairs r"
shows "∃b. ⟨vfst x, b⟩ ∈⇩∘ r"
using assms by force
lemma vpairs_ex_vsnd:
assumes "y ∈⇩∘ vpairs r"
shows "∃a. ⟨a, vsnd y⟩ ∈⇩∘ r"
using assms by force
subsection‹Cartesian products›
text‹
The following lemma is based on Theorem 6.2 from
\<^cite>‹"takeuti_introduction_1971"›.
›
lemma vtimes_vsubset_VPowVPow: "A ×⇩∘ B ⊆⇩∘ VPow (VPow (A ∪⇩∘ B))"
proof(intro vsubsetI)
fix x assume "x ∈⇩∘ A ×⇩∘ B"
then obtain a b where x_def: "x = ⟨a, b⟩" and "a ∈⇩∘ A" and "b ∈⇩∘ B" by clarsimp
then show "x ∈⇩∘ VPow (VPow (A ∪⇩∘ B))"
unfolding x_def vpair_def by auto
qed
subsection‹Pairwise›
definition vpairwise :: "(V ⇒ V ⇒ bool) ⇒ V ⇒ bool"
where "vpairwise R S ⟷ (∀x∈⇩∘S. ∀y∈⇩∘S. x ≠ y ⟶ R x y)"
text‹Rules.›
lemma vpairwiseI[intro?]:
assumes "⋀x y. x ∈⇩∘ S ⟹ y ∈⇩∘ S ⟹ x ≠ y ⟹ R x y"
shows "vpairwise R S"
using assms by (simp add: vpairwise_def)
lemma vpairwiseD[dest]:
assumes "vpairwise R S" and "x ∈⇩∘ S" and "y ∈⇩∘ S" and "x ≠ y"
shows "R x y" and "R y x"
using assms unfolding vpairwise_def by auto
text‹Elementary properties.›
lemma vpairwise_trivial[simp]: "vpairwise (λi j. j ≠ i) I"
by (auto simp: vpairwise_def)
text‹Set operations.›
lemma vpairwise_vempty[simp]: "vpairwise P 0" by (force intro: vpairwiseI)
lemma vpairwise_vsingleton[simp]: "vpairwise P (set {A})"
by (simp add: vpairwise_def)
lemma vpairwise_vinsert:
"vpairwise r (vinsert x s) ⟷
(∀y. y ∈⇩∘ s ∧ y ≠ x ⟶ r x y ∧ r y x) ∧ vpairwise r s"
by (intro iffI conjI allI impI; (elim conjE | tactic‹all_tac›))
(auto simp: vpairwise_def)
lemma vpairwise_vsubset:
assumes "vpairwise P S" and "T ⊆⇩∘ S"
shows "vpairwise P T"
using assms by (metis less_eq_V_def subset_eq vpairwiseD(2) vpairwiseI)
lemma vpairwise_mono:
assumes "vpairwise P A" and "⋀x y. P x y ⟹ Q x y" and "B ⊆⇩∘ A"
shows "vpairwise Q B"
using assms by (simp add: less_eq_V_def subset_eq vpairwiseD(2) vpairwiseI)
subsection‹Disjoint sets›
abbreviation vdisjnt :: "V ⇒ V ⇒ bool"
where "vdisjnt A B ≡ A ∩⇩∘ B = 0"
text‹Elementary properties.›
lemma vdisjnt_sym:
assumes "vdisjnt A B"
shows "vdisjnt B A"
using assms by blast
lemma vdisjnt_iff: "vdisjnt A B ⟷ (∀x. ~ (x ∈⇩∘ A ∧ x ∈⇩∘ B))" by auto
text‹Set operations.›
lemma vdisjnt_vempty1[simp]: "vdisjnt 0 A"
and vdisjnt_vempty2[simp]: "vdisjnt A 0"
by auto
lemma vdisjnt_singleton0[simp]: "vdisjnt (set {a}) (set {b}) ⟷ a ≠ b"
and vdisjnt_singleton1[simp]: "vdisjnt (set {a}) A ⟷ a ∉⇩∘ A"
and vdisjnt_singleton2[simp]: "vdisjnt A (set {a}) ⟷ a ∉⇩∘ A"
by force+
lemma vdisjnt_vinsert_left: "vdisjnt (vinsert a X) Y ⟷ a ∉⇩∘ Y ∧ vdisjnt X Y"
by (metis vdisjnt_iff vdisjnt_sym vinsertE1 vinsertI2 vinsert_iff)
lemma vdisjnt_vinsert_right: "vdisjnt Y (vinsert a X) ⟷ a ∉⇩∘ Y ∧ vdisjnt Y X"
using vdisjnt_sym vdisjnt_vinsert_left by meson
lemma vdisjnt_vsubset_left:
assumes "vdisjnt X Y" and "Z ⊆⇩∘ X"
shows "vdisjnt Z Y"
using assms by (auto intro!: vsubset_antisym)
lemma vdisjnt_vsubset_right:
assumes "vdisjnt X Y" and "Z ⊆⇩∘ Y"
shows "vdisjnt X Z"
using assms by (auto intro!: vsubset_antisym)
lemma vdisjnt_vunion_left: "vdisjnt (A ∪⇩∘ B) C ⟷ vdisjnt A C ∧ vdisjnt B C"
by auto
lemma vdisjnt_vunion_right: "vdisjnt C (A ∪⇩∘ B) ⟷ vdisjnt C A ∧ vdisjnt C B"
by auto
text‹Special properties.›
lemma vdisjnt_vemptyI[intro]:
assumes "⋀x. x ∈⇩∘ A ⟹ x ∈⇩∘ B ⟹ False"
shows "vdisjnt A B"
using assms by (auto intro!: vsubset_antisym)
lemma vdisjnt_self_iff_vempty[simp]: "vdisjnt S S ⟷ S = 0" by auto
lemma vdisjntI:
assumes "⋀x y. x ∈⇩∘ A ⟹ y ∈⇩∘ B ⟹ x ≠ y"
shows "vdisjnt A B"
using assms by auto
lemma vdisjnt_nin_right:
assumes "vdisjnt A B" and "a ∈⇩∘ A"
shows "a ∉⇩∘ B"
using assms by auto
lemma vdisjnt_nin_left:
assumes "vdisjnt B A" and "a ∈⇩∘ A"
shows "a ∉⇩∘ B"
using assms by auto
text‹\newpage›
end