Theory CZH_Sets_BRelations
section‹Elementary binary relations›
theory CZH_Sets_BRelations
imports CZH_Sets_Sets
keywords "mk_VLambda" :: thy_defn
and "|app" "|vsv" "|vdomain"
begin
subsection‹Background›
text‹
This section presents a theory of binary relations internalized in the
type \<^typ>‹V› and exposes elementary properties of two special types of
binary relations: single-valued binary relations and injective single-valued
binary relations.
Many of the results that are presented in this section were carried over
(with amendments) from the theories \<^text>‹Set› and \<^text>‹Relation› in the main
library.
›
subsection‹Constructors›
subsubsection‹Identity relation›
definition vid_on :: "V ⇒ V"
where "vid_on A = set {⟨a, a⟩ | a. a ∈⇩∘ A}"
lemma vid_on_small[simp]: "small {⟨a, a⟩ | a. a ∈⇩∘ A}"
by (rule down[of _ ‹A ×⇩∘ A›]) blast
text‹Rules.›
lemma vid_on_eqI:
assumes "a = b" and "a ∈⇩∘ A"
shows "⟨a, b⟩ ∈⇩∘ vid_on A"
using assms by (simp add: vid_on_def)
lemma vid_onI[intro!]:
assumes "a ∈⇩∘ A"
shows "⟨a, a⟩ ∈⇩∘ vid_on A"
by (rule vid_on_eqI) (simp_all add: assms)
lemma vid_onD[dest!]:
assumes "⟨a, a⟩ ∈⇩∘ vid_on A"
shows "a ∈⇩∘ A"
using assms unfolding vid_on_def by auto
lemma vid_onE[elim!]:
assumes "x ∈⇩∘ vid_on A" and "∃a∈⇩∘A. x = ⟨a, a⟩ ⟹ P"
shows P
using assms unfolding vid_on_def by auto
lemma vid_on_iff: "⟨a, b⟩ ∈⇩∘ vid_on A ⟷ a = b ∧ a ∈⇩∘ A" by auto
text‹Set operations.›
lemma vid_on_vempty[simp]: "vid_on 0 = 0" by auto
lemma vid_on_vsingleton[simp]: "vid_on (set {a}) = set {⟨a, a⟩}" by auto
lemma vid_on_vdoubleton[simp]: "vid_on (set {a, b}) = set {⟨a, a⟩, ⟨b, b⟩}"
by (auto simp: vinsert_set_insert_eq)
lemma vid_on_mono:
assumes "A ⊆⇩∘ B"
shows "vid_on A ⊆⇩∘ vid_on B"
using assms by auto
lemma vid_on_vinsert: "(vinsert ⟨a, a⟩ (vid_on A)) = (vid_on (vinsert a A))"
by auto
lemma vid_on_vintersection: "vid_on (A ∩⇩∘ B) = vid_on A ∩⇩∘ vid_on B" by auto
lemma vid_on_vunion: "vid_on (A ∪⇩∘ B) = vid_on A ∪⇩∘ vid_on B" by auto
lemma vid_on_vdiff: "vid_on (A -⇩∘ B) = vid_on A -⇩∘ vid_on B" by auto
text‹Special properties.›
lemma vid_on_vsubset_vtimes: "vid_on A ⊆⇩∘ A ×⇩∘ A" by clarsimp
lemma VLambda_id[simp]: "VLambda A id = vid_on A"
by (simp add: id_def vid_on_def Setcompr_eq_image VLambda_def)
subsubsection‹Constant function›
definition vconst_on :: "V ⇒ V ⇒ V"
where "vconst_on A c = set {⟨a, c⟩ | a. a ∈⇩∘ A}"
lemma small_vconst_on[simp]: "small {⟨a, c⟩ | a. a ∈⇩∘ A}"
by (rule down[of _ ‹A ×⇩∘ set {c}›]) auto
text‹Rules.›
lemma vconst_onI[intro!]:
assumes "a ∈⇩∘ A"
shows "⟨a, c⟩ ∈⇩∘ vconst_on A c"
using assms unfolding vconst_on_def by simp
lemma vconst_onD[dest!]:
assumes "⟨a, c⟩ ∈⇩∘ vconst_on A c"
shows "a ∈⇩∘ A"
using assms unfolding vconst_on_def by simp
lemma vconst_onE[elim!]:
assumes "x ∈⇩∘ vconst_on A c"
obtains a where "a ∈⇩∘ A" and "x = ⟨a, c⟩"
using assms unfolding vconst_on_def by auto
lemma vconst_on_iff: "⟨a, c⟩ ∈⇩∘ vconst_on A c ⟷ a ∈⇩∘ A" by auto
text‹Set operations.›
lemma vconst_on_vempty[simp]: "vconst_on 0 c = 0"
unfolding vconst_on_def by auto
lemma vconst_on_vsingleton[simp]: "vconst_on (set {a}) c = set {⟨a, c⟩}" by auto
lemma vconst_on_vdoubleton[simp]: "vconst_on (set {a, b}) c = set {⟨a, c⟩, ⟨b, c⟩}"
by (auto simp: vinsert_set_insert_eq)
lemma vconst_on_mono:
assumes "A ⊆⇩∘ B"
shows "vconst_on A c ⊆⇩∘ vconst_on B c"
using assms by auto
lemma vconst_on_vinsert:
"(vinsert ⟨a, c⟩ (vconst_on A c)) = (vconst_on (vinsert a A) c)"
by auto
lemma vconst_on_vintersection:
"vconst_on (A ∩⇩∘ B) c = vconst_on A c ∩⇩∘ vconst_on B c"
by auto
lemma vconst_on_vunion: "vconst_on (A ∪⇩∘ B) c = vconst_on A c ∪⇩∘ vconst_on B c"
by auto
lemma vconst_on_vdiff: "vconst_on (A -⇩∘ B) c = vconst_on A c -⇩∘ vconst_on B c"
by auto
text‹Special properties.›
lemma vconst_on_eq_vtimes: "vconst_on A c = A ×⇩∘ set {c}"
by standard (auto intro!: vsubset_antisym)
subsubsection‹‹VLambda››
text‹Rules.›
lemma VLambdaI[intro!]:
assumes "a ∈⇩∘ A"
shows "⟨a, f a⟩ ∈⇩∘ (λa∈⇩∘A. f a)"
using assms unfolding VLambda_def by auto
lemma VLambdaD[dest!]:
assumes "⟨a, f a⟩ ∈⇩∘ (λa∈⇩∘A. f a)"
shows "a ∈⇩∘ A"
using assms unfolding VLambda_def by auto
lemma VLambdaE[elim!]:
assumes "x ∈⇩∘ (λa∈⇩∘A. f a)"
obtains a where "a ∈⇩∘ A" and "x = ⟨a, f a⟩"
using assms unfolding VLambda_def by auto
lemma VLambda_iff1: "x ∈⇩∘ (λa∈⇩∘A. f a) ⟷ (∃a∈⇩∘A. x = ⟨a, f a⟩)" by auto
lemma VLambda_iff2: "⟨a, b⟩ ∈⇩∘ (λa∈⇩∘A. f a) ⟷ b = f a ∧ a ∈⇩∘ A" by auto
lemma small_VLambda[simp]: "small {⟨a, f a⟩ | a. a ∈⇩∘ A}" by auto
lemma VLambda_set_def: "(λa∈⇩∘A. f a) = set {⟨a, f a⟩ | a. a ∈⇩∘ A}" by auto
text‹Set operations.›
lemma VLambda_vempty[simp]: "(λa∈⇩∘0. f a) = 0" by auto
lemma VLambda_vsingleton: "(λa∈⇩∘set {a}. f a) = set {⟨a, f a⟩}"
by auto
lemma VLambda_vdoubleton:
"(λa∈⇩∘set {a, b}. f a) = set {⟨a, f a⟩, ⟨b, f b⟩}"
by (auto simp: vinsert_set_insert_eq)
lemma VLambda_mono:
assumes "A ⊆⇩∘ B"
shows "(λa∈⇩∘A. f a) ⊆⇩∘ (λa∈⇩∘B. f a)"
using assms by auto
lemma VLambda_vinsert:
"(λa∈⇩∘vinsert a A. f a) = (λa∈⇩∘set {a}. f a) ∪⇩∘ (λa∈⇩∘A. f a)"
by auto
lemma VLambda_vintersection: "(λa∈⇩∘A ∩⇩∘ B. f a) = (λa∈⇩∘A. f a) ∩⇩∘ (λa∈⇩∘B. f a)"
by auto
lemma VLambda_vunion: "(λa∈⇩∘A ∪⇩∘ B. f a) = (λa∈⇩∘A. f a) ∪⇩∘ (λa∈⇩∘B. f a)" by auto
lemma VLambda_vdiff: "(λa∈⇩∘A -⇩∘ B. f a) = (λa∈⇩∘A. f a) -⇩∘ (λa∈⇩∘B. f a)" by auto
text‹Connections.›
lemma VLambda_vid_on: "(λa∈⇩∘A. a) = vid_on A" by auto
lemma VLambda_vconst_on: "(λa∈⇩∘A. c) = vconst_on A c" by auto
subsubsection‹Composition›
definition vcomp :: "V ⇒ V ⇒ V" (infixr ‹∘⇩∘› 75)
where "r ∘⇩∘ s = set {⟨a, c⟩ | a c. ∃b. ⟨a, b⟩ ∈⇩∘ s ∧ ⟨b, c⟩ ∈⇩∘ r}"
notation vcomp (infixr ‹∘⇩∘› 75)
lemma vcomp_small[simp]: "small {⟨a, c⟩ | a c. ∃b. ⟨a, b⟩ ∈⇩∘ s ∧ ⟨b, c⟩ ∈⇩∘ r}"
(is ‹small ?s›)
proof-
define comp' where "comp' = (λ⟨⟨a, b⟩, ⟨c, d⟩⟩. ⟨a, d⟩)"
have "small (elts (vpairs (s ×⇩∘ r)))" by simp
then have small_comp: "small (comp' ` elts (vpairs (s ×⇩∘ r)))" by simp
have ss: "?s ⊆ (comp' ` elts (vpairs (s ×⇩∘ r)))"
proof
fix x assume "x ∈ ?s"
then obtain a b c where x_def: "x = ⟨a, c⟩"
and "⟨a, b⟩ ∈⇩∘ s"
and "⟨b, c⟩ ∈⇩∘ r"
by auto
then have abbc: "⟨⟨a, b⟩, ⟨b, c⟩⟩ ∈⇩∘ vpairs (s ×⇩∘ r)"
by (simp add: vpairs_iff_elts)
have x_def': "x = comp' ⟨⟨a, b⟩, ⟨b, c⟩⟩" unfolding comp'_def x_def by auto
then show "x ∈ comp' ` elts (vpairs (s ×⇩∘ r))"
unfolding x_def' using abbc by auto
qed
with small_comp show ?thesis by (metis (lifting) smaller_than_small)
qed
text‹Rules.›
lemma vcompI[intro!]:
assumes "⟨b, c⟩ ∈⇩∘ r" and "⟨a, b⟩ ∈⇩∘ s"
shows "⟨a, c⟩ ∈⇩∘ r ∘⇩∘ s"
using assms unfolding vcomp_def by auto
lemma vcompD[dest!]:
assumes "⟨a, c⟩ ∈⇩∘ r ∘⇩∘ s"
shows "∃b. ⟨b, c⟩ ∈⇩∘ r ∧ ⟨a, b⟩ ∈⇩∘ s"
using assms unfolding vcomp_def by auto
lemma vcompE[elim!]:
assumes "ac ∈⇩∘ r ∘⇩∘ s"
obtains a b c where "ac = ⟨a, c⟩" and "⟨a, b⟩ ∈⇩∘ s" and "⟨b, c⟩ ∈⇩∘ r"
using assms unfolding vcomp_def by clarsimp
text‹Elementary properties.›
lemma vcomp_assoc: "(r ∘⇩∘ s) ∘⇩∘ t = r ∘⇩∘ (s ∘⇩∘ t)" by auto
text‹Set operations.›
lemma vcomp_vempty_left[simp]: "0 ∘⇩∘ r = 0" by auto
lemma vcomp_vempty_right[simp]: "r ∘⇩∘ 0 = 0" by auto
lemma vcomp_mono:
assumes "r' ⊆⇩∘ r" and "s' ⊆⇩∘ s"
shows "r' ∘⇩∘ s' ⊆⇩∘ r ∘⇩∘ s"
using assms by auto
lemma vcomp_vinsert_left[simp]:
"(vinsert ⟨a, b⟩ s) ∘⇩∘ r = (set {⟨a, b⟩} ∘⇩∘ r) ∪⇩∘ (s ∘⇩∘ r)"
by auto
lemma vcomp_vinsert_right[simp]:
"r ∘⇩∘ (vinsert ⟨a, b⟩ s) = (r ∘⇩∘ set {⟨a, b⟩}) ∪⇩∘ (r ∘⇩∘ s)"
by auto
lemma vcomp_vunion_left[simp]: "(s ∪⇩∘ t) ∘⇩∘ r = (s ∘⇩∘ r) ∪⇩∘ (t ∘⇩∘ r)" by auto
lemma vcomp_vunion_right[simp]: "r ∘⇩∘ (s ∪⇩∘ t) = (r ∘⇩∘ s) ∪⇩∘ (r ∘⇩∘ t)" by auto
text‹Connections.›
lemma vcomp_vid_on_idem[simp]: "vid_on A ∘⇩∘ vid_on A = vid_on A" by auto
lemma vcomp_vid_on[simp]: "vid_on A ∘⇩∘ vid_on B = vid_on (A ∩⇩∘ B)" by auto
lemma vcomp_vconst_on_vid_on[simp]: "vconst_on A c ∘⇩∘ vid_on A = vconst_on A c"
by auto
lemma vcomp_VLambda_vid_on[simp]: "(λa∈⇩∘A. f a) ∘⇩∘ vid_on A = (λa∈⇩∘A. f a)"
by auto
text‹Special properties.›
lemma vcomp_vsubset_vtimes:
assumes "r ⊆⇩∘ B ×⇩∘ C" and "s ⊆⇩∘ A ×⇩∘ B"
shows "r ∘⇩∘ s ⊆⇩∘ A ×⇩∘ C"
using assms by auto
lemma vcomp_obtain_middle[elim]:
assumes "⟨a, c⟩ ∈⇩∘ r ∘⇩∘ s"
obtains b where "⟨a, b⟩ ∈⇩∘ s" and "⟨b, c⟩ ∈⇩∘ r"
using assms by auto
subsubsection‹Converse relation›
definition vconverse :: "V ⇒ V"
where "vconverse A = (λr∈⇩∘A. set {⟨b, a⟩ | a b. ⟨a, b⟩ ∈⇩∘ r})"
abbreviation app_vconverse (‹(_¯⇩∘)› [1000] 999)
where "r¯⇩∘ ≡ vconverse (set {r}) ⦇r⦈"
lemma app_vconverse_def: "r¯⇩∘ = set {⟨b, a⟩ | a b. ⟨a, b⟩ ∈⇩∘ r}"
unfolding vconverse_def by simp
lemma vconverse_small[simp]: "small {⟨b, a⟩ | a b. ⟨a, b⟩ ∈⇩∘ r}"
proof-
have eq: "{⟨b, a⟩ | a b. ⟨a, b⟩ ∈⇩∘ r} = (λ⟨a, b⟩. ⟨b, a⟩) ` elts (vpairs r)"
proof(rule subset_antisym; rule subsetI, unfold mem_Collect_eq)
fix x assume "x ∈ (λ⟨a, b⟩. ⟨b, a⟩) ` elts (vpairs r)"
then obtain a b where "⟨a, b⟩ ∈⇩∘ vpairs r" and "x = (λ⟨a, b⟩. ⟨b, a⟩) ⟨a, b⟩"
by blast
then show "∃a b. x = ⟨b, a⟩ ∧ ⟨a, b⟩ ∈⇩∘ r" by auto
qed (use image_iff vpairs_iff_elts in fastforce)
show ?thesis unfolding eq by (rule replacement) auto
qed
text‹Rules.›
lemma vconverseI[intro!]:
assumes "r ∈⇩∘ A"
shows "⟨r, r¯⇩∘⟩ ∈⇩∘ vconverse A"
using assms unfolding vconverse_def by auto
lemma vconverseD[dest]:
assumes "⟨r, s⟩ ∈⇩∘ vconverse A"
shows "r ∈⇩∘ A" and "s = r¯⇩∘"
using assms unfolding vconverse_def by auto
lemma vconverseE[elim]:
assumes "x ∈⇩∘ vconverse A"
obtains r where "x = ⟨r, r¯⇩∘⟩" and "r ∈⇩∘ A"
using assms unfolding vconverse_def by auto
lemma app_vconverseI[sym, intro!]:
assumes "⟨a, b⟩ ∈⇩∘ r"
shows "⟨b, a⟩ ∈⇩∘ r¯⇩∘"
using assms unfolding vconverse_def by auto
lemma app_vconverseD[sym, dest]:
assumes "⟨a, b⟩ ∈⇩∘ r¯⇩∘"
shows "⟨b, a⟩ ∈⇩∘ r"
using assms unfolding vconverse_def by simp
lemma app_vconverseE[elim!]:
assumes "x ∈⇩∘ r¯⇩∘"
obtains a b where "x = ⟨b, a⟩" and "⟨a, b⟩ ∈⇩∘ r"
using assms unfolding vconverse_def by auto
lemma vconverse_iff: "⟨b, a⟩ ∈⇩∘ r¯⇩∘ ⟷ ⟨a, b⟩ ∈⇩∘ r" by auto
text‹Set operations.›
lemma vconverse_vempty[simp]: "0¯⇩∘ = 0" by auto
lemma vconverse_vsingleton: "(set {⟨a, b⟩})¯⇩∘ = set {⟨b, a⟩}" by auto
lemma vconverse_vdoubleton[simp]: "(set {⟨a, b⟩, ⟨c, d⟩})¯⇩∘ = set {⟨b, a⟩, ⟨d, c⟩}"
by (auto simp: vinsert_set_insert_eq)
lemma vconverse_vinsert: "(vinsert ⟨a, b⟩ r)¯⇩∘ = vinsert ⟨b, a⟩ (r¯⇩∘)" by auto
lemma vconverse_vintersection: "(r ∩⇩∘ s)¯⇩∘ = r¯⇩∘ ∩⇩∘ s¯⇩∘" by auto
lemma vconverse_vunion: "(r ∪⇩∘ s)¯⇩∘ = r¯⇩∘ ∪⇩∘ s¯⇩∘" by auto
text‹Connections.›
lemma vconverse_vid_on[simp]: "(vid_on A)¯⇩∘ = vid_on A" by auto
lemma vconverse_vconst_on[simp]: "(vconst_on A c)¯⇩∘ = set {c} ×⇩∘ A" by auto
lemma vconverse_vcomp: "(r ∘⇩∘ s)¯⇩∘ = s¯⇩∘ ∘⇩∘ r¯⇩∘" by auto
lemma vconverse_vtimes: "(A ×⇩∘ B)¯⇩∘ = (B ×⇩∘ A)" by auto
subsubsection‹Left restriction›
definition vlrestriction :: "V ⇒ V"
where "vlrestriction D =
VLambda D (λ⟨r, A⟩. set {⟨a, b⟩ | a b. a ∈⇩∘ A ∧ ⟨a, b⟩ ∈⇩∘ r})"
abbreviation app_vlrestriction :: "V ⇒ V ⇒ V" (infixr ‹↾⇧l⇩∘› 80)
where "r ↾⇧l⇩∘ A ≡ vlrestriction (set {⟨r, A⟩}) ⦇⟨r, A⟩⦈"
lemma app_vlrestriction_def: "r ↾⇧l⇩∘ A = set {⟨a, b⟩ | a b. a ∈⇩∘ A ∧ ⟨a, b⟩ ∈⇩∘ r}"
unfolding vlrestriction_def by simp
lemma vlrestriction_small[simp]: "small {⟨a, b⟩ | a b. a ∈⇩∘ A ∧ ⟨a, b⟩ ∈⇩∘ r}"
by (rule down[of _ r]) auto
text‹Rules.›
lemma vlrestrictionI[intro!]:
assumes "⟨r, A⟩ ∈⇩∘ D"
shows "⟨⟨r, A⟩, r ↾⇧l⇩∘ A⟩ ∈⇩∘ vlrestriction D"
using assms unfolding vlrestriction_def by (simp add: VLambda_iff2)
lemma vlrestrictionD[dest]:
assumes "⟨⟨r, A⟩, s⟩ ∈⇩∘ vlrestriction D"
shows "⟨r, A⟩ ∈⇩∘ D" and "s = r ↾⇧l⇩∘ A"
using assms unfolding vlrestriction_def by auto
lemma vlrestrictionE[elim]:
assumes "x ∈⇩∘ vlrestriction D" and "D ⊆⇩∘ R ×⇩∘ X"
obtains r A where "x = ⟨⟨r, A⟩, r ↾⇧l⇩∘ A⟩" and "r ∈⇩∘ R" and "A ∈⇩∘ X"
using assms unfolding vlrestriction_def by auto
lemma app_vlrestrictionI[intro!]:
assumes "a ∈⇩∘ A" and "⟨a, b⟩ ∈⇩∘ r"
shows "⟨a, b⟩ ∈⇩∘ r ↾⇧l⇩∘ A"
using assms unfolding vlrestriction_def by simp
lemma app_vlrestrictionD[dest]:
assumes "⟨a, b⟩ ∈⇩∘ r ↾⇧l⇩∘ A"
shows "a ∈⇩∘ A" and "⟨a, b⟩ ∈⇩∘ r"
using assms unfolding vlrestriction_def by auto
lemma app_vlrestrictionE[elim]:
assumes "x ∈⇩∘ r ↾⇧l⇩∘ A"
obtains a b where "x = ⟨a, b⟩" and "a ∈⇩∘ A" and "⟨a, b⟩ ∈⇩∘ r"
using assms unfolding vlrestriction_def by auto
text‹Set operations.›
lemma vlrestriction_on_vempty[simp]: "r ↾⇧l⇩∘ 0 = 0"
by (auto intro!: vsubset_antisym)
lemma vlrestriction_vempty[simp]: "0 ↾⇧l⇩∘ A = 0" by auto
lemma vlrestriction_vsingleton_in[simp]:
assumes "a ∈⇩∘ A"
shows "set {⟨a, b⟩} ↾⇧l⇩∘ A = set {⟨a, b⟩}"
using assms by auto
lemma vlrestriction_vsingleton_nin[simp]:
assumes "a ∉⇩∘ A"
shows "set {⟨a, b⟩} ↾⇧l⇩∘ A = 0"
using assms by auto
lemma vlrestriction_mono:
assumes "A ⊆⇩∘ B"
shows "r ↾⇧l⇩∘ A ⊆⇩∘ r ↾⇧l⇩∘ B"
using assms by auto
lemma vlrestriction_vinsert_nin[simp]:
assumes "a ∉⇩∘ A"
shows "(vinsert ⟨a, b⟩ r) ↾⇧l⇩∘ A = r ↾⇧l⇩∘ A"
using assms by auto
lemma vlrestriction_vinsert_in:
assumes "a ∈⇩∘ A"
shows "(vinsert ⟨a, b⟩ r) ↾⇧l⇩∘ A = vinsert ⟨a, b⟩ (r ↾⇧l⇩∘ A)"
using assms by auto
lemma vlrestriction_vintersection: "(r ∩⇩∘ s) ↾⇧l⇩∘ A = r ↾⇧l⇩∘ A ∩⇩∘ s ↾⇧l⇩∘ A" by auto
lemma vlrestriction_vunion: "(r ∪⇩∘ s) ↾⇧l⇩∘ A = r ↾⇧l⇩∘ A ∪⇩∘ s ↾⇧l⇩∘ A" by auto
lemma vlrestriction_vdiff: "(r -⇩∘ s) ↾⇧l⇩∘ A = r ↾⇧l⇩∘ A -⇩∘ s ↾⇧l⇩∘ A" by auto
text‹Connections.›
lemma vlrestriction_vid_on[simp]: "(vid_on A) ↾⇧l⇩∘ B = vid_on (A ∩⇩∘ B)" by auto
lemma vlrestriction_vconst_on: "(vconst_on A c) ↾⇧l⇩∘ B = (vconst_on B c) ↾⇧l⇩∘ A"
by auto
lemma vlrestriction_vconst_on_commute:
assumes "x ∈⇩∘ vconst_on A c ↾⇧l⇩∘ B"
shows "x ∈⇩∘ vconst_on B c ↾⇧l⇩∘ A"
using assms by auto
lemma vlrestriction_vcomp[simp]: "(r ∘⇩∘ s) ↾⇧l⇩∘ A = r ∘⇩∘ (s ↾⇧l⇩∘ A)" by auto
text‹Previous connections.›
lemma vcomp_rel_vid_on[simp]: "r ∘⇩∘ vid_on A = r ↾⇧l⇩∘ A" by auto
lemma vcomp_vconst_on:
"r ∘⇩∘ (vconst_on A c) = (r ↾⇧l⇩∘ set {c}) ∘⇩∘ (vconst_on A c)"
by auto
text‹Special properties.›
lemma vlrestriction_vsubset_vpairs: "r ↾⇧l⇩∘ A ⊆⇩∘ vpairs r"
by (rule vsubsetI) blast
lemma vlrestriction_vsubset_rel: "r ↾⇧l⇩∘ A ⊆⇩∘ r" by auto
lemma vlrestriction_VLambda: "(λa∈⇩∘A. f a) ↾⇧l⇩∘ B = (λa∈⇩∘A ∩⇩∘ B. f a)" by auto
subsubsection‹Right restriction›
definition vrrestriction :: "V ⇒ V"
where "vrrestriction D =
VLambda D (λ⟨r, A⟩. set {⟨a, b⟩ | a b. b ∈⇩∘ A ∧ ⟨a, b⟩ ∈⇩∘ r})"
abbreviation app_vrrestriction :: "V ⇒ V ⇒ V" (infixr ‹↾⇧r⇩∘› 80)
where "r ↾⇧r⇩∘ A ≡ vrrestriction (set {⟨r, A⟩}) ⦇⟨r, A⟩⦈"
lemma app_vrrestriction_def: "r ↾⇧r⇩∘ A = set {⟨a, b⟩ | a b. b ∈⇩∘ A ∧ ⟨a, b⟩ ∈⇩∘ r}"
unfolding vrrestriction_def by simp
lemma vrrestriction_small[simp]: "small {⟨a, b⟩ | a b. b ∈⇩∘ A ∧ ⟨a, b⟩ ∈⇩∘ r}"
by (rule down[of _ r]) auto
text‹Rules.›
lemma vrrestrictionI[intro!]:
assumes "⟨r, A⟩ ∈⇩∘ D"
shows "⟨⟨r, A⟩, r ↾⇧r⇩∘ A⟩ ∈⇩∘ vrrestriction D"
using assms unfolding vrrestriction_def by (simp add: VLambda_iff2)
lemma vrrestrictionD[dest]:
assumes "⟨⟨r, A⟩, s⟩ ∈⇩∘ vrrestriction D"
shows "⟨r, A⟩ ∈⇩∘ D" and "s = r ↾⇧r⇩∘ A"
using assms unfolding vrrestriction_def by auto
lemma vrrestrictionE[elim]:
assumes "x ∈⇩∘ vrrestriction D" and "D ⊆⇩∘ R ×⇩∘ X"
obtains r A where "x = ⟨⟨r, A⟩, r ↾⇧r⇩∘ A⟩" and "r ∈⇩∘ R" and "A ∈⇩∘ X"
using assms unfolding vrrestriction_def by auto
lemma app_vrrestrictionI[intro!]:
assumes "b ∈⇩∘ A" and "⟨a, b⟩ ∈⇩∘ r"
shows "⟨a, b⟩ ∈⇩∘ r ↾⇧r⇩∘ A"
using assms unfolding vrrestriction_def by simp
lemma app_vrrestrictionD[dest]:
assumes "⟨a, b⟩ ∈⇩∘ r ↾⇧r⇩∘ A"
shows "b ∈⇩∘ A" and "⟨a, b⟩ ∈⇩∘ r"
using assms unfolding vrrestriction_def by auto
lemma app_vrrestrictionE[elim]:
assumes "x ∈⇩∘ r ↾⇧r⇩∘ A"
obtains a b where "x = ⟨a, b⟩" and "b ∈⇩∘ A" and "⟨a, b⟩ ∈⇩∘ r"
using assms unfolding vrrestriction_def by auto
text‹Set operations.›
lemma vrrestriction_on_vempty[simp]: "r ↾⇧r⇩∘ 0 = 0"
by (auto intro!: vsubset_antisym)
lemma vrrestriction_vempty[simp]: "0 ↾⇧r⇩∘ A = 0" by auto
lemma vrrestriction_vsingleton_in[simp]:
assumes "b ∈⇩∘ A"
shows "set {⟨a, b⟩} ↾⇧r⇩∘ A = set {⟨a, b⟩}"
using assms by auto
lemma vrrestriction_vsingleton_nin[simp]:
assumes "b ∉⇩∘ A"
shows "set {⟨a, b⟩} ↾⇧r⇩∘ A = 0"
using assms by auto
lemma vrrestriction_mono:
assumes "A ⊆⇩∘ B"
shows "r ↾⇧r⇩∘ A ⊆⇩∘ r ↾⇧r⇩∘ B"
using assms by auto
lemma vrrestriction_vinsert_nin[simp]:
assumes "b ∉⇩∘ A"
shows "(vinsert ⟨a, b⟩ r) ↾⇧r⇩∘ A = r ↾⇧r⇩∘ A"
using assms by auto
lemma vrrestriction_vinsert_in:
assumes "b ∈⇩∘ A"
shows "(vinsert ⟨a, b⟩ r) ↾⇧r⇩∘ A = vinsert ⟨a, b⟩ (r ↾⇧r⇩∘ A)"
using assms by auto
lemma vrrestriction_vintersection: "(r ∩⇩∘ s) ↾⇧r⇩∘ A = r ↾⇧r⇩∘ A ∩⇩∘ s ↾⇧r⇩∘ A" by auto
lemma vrrestriction_vunion: "(r ∪⇩∘ s) ↾⇧r⇩∘ A = r ↾⇧r⇩∘ A ∪⇩∘ s ↾⇧r⇩∘ A" by auto
lemma vrrestriction_vdiff: "(r -⇩∘ s) ↾⇧r⇩∘ A = r ↾⇧r⇩∘ A -⇩∘ s ↾⇧r⇩∘ A" by auto
text‹Connections.›
lemma vrrestriction_vid_on[simp]: "(vid_on A) ↾⇧r⇩∘ B = vid_on (A ∩⇩∘ B)" by auto
lemma vrrestriction_vconst_on:
assumes "c ∈⇩∘ B"
shows "(vconst_on A c) ↾⇧r⇩∘ B = vconst_on A c"
using assms by auto
lemma vrrestriction_vcomp[simp]: "(r ∘⇩∘ s) ↾⇧r⇩∘ A = (r ↾⇧r⇩∘ A) ∘⇩∘ s" by auto
text‹Previous connections.›
lemma vcomp_vid_on_rel[simp]: "vid_on A ∘⇩∘ r = r ↾⇧r⇩∘ A"
by (auto intro!: vsubset_antisym)
lemma vcomp_vconst_on_rel: "(vconst_on A c) ∘⇩∘ r = (vconst_on A c) ∘⇩∘ (r ↾⇧r⇩∘ A)"
by auto
lemma vlrestriction_vconverse: "r¯⇩∘ ↾⇧l⇩∘ A = (r ↾⇧r⇩∘ A)¯⇩∘" by auto
lemma vrrestriction_vconverse: "r¯⇩∘ ↾⇧r⇩∘ A = (r ↾⇧l⇩∘ A)¯⇩∘" by auto
text‹Special properties.›
lemma vrrestriction_vsubset_rel: "r ↾⇧r⇩∘ A ⊆⇩∘ r" by auto
lemma vrrestriction_vsubset_vpairs: "r ↾⇧r⇩∘ A ⊆⇩∘ vpairs r" by auto
subsubsection‹Restriction›
definition vrestriction :: "V ⇒ V"
where "vrestriction D =
VLambda D (λ⟨r, A⟩. set {⟨a, b⟩ | a b. a ∈⇩∘ A ∧ b ∈⇩∘ A ∧ ⟨a, b⟩ ∈⇩∘ r})"
abbreviation app_vrestriction :: "V ⇒ V ⇒ V" (infixr ‹↾⇩∘› 80)
where "r ↾⇩∘ A ≡ vrestriction (set {⟨r, A⟩}) ⦇⟨r, A⟩⦈"
lemma app_vrestriction_def:
"r ↾⇩∘ A = set {⟨a, b⟩ | a b. a ∈⇩∘ A ∧ b ∈⇩∘ A ∧ ⟨a, b⟩ ∈⇩∘ r}"
unfolding vrestriction_def by simp
lemma vrestriction_small[simp]:
"small {⟨a, b⟩ | a b. a ∈⇩∘ A ∧ b ∈⇩∘ A ∧ ⟨a, b⟩ ∈⇩∘ r}"
by (rule down[of _ r]) auto
text‹Rules.›
lemma vrestrictionI[intro!]:
assumes "⟨r, A⟩ ∈⇩∘ D"
shows "⟨⟨r, A⟩, r ↾⇩∘ A⟩ ∈⇩∘ vrestriction D"
using assms unfolding vrestriction_def by (simp add: VLambda_iff2)
lemma vrestrictionD[dest]:
assumes "⟨⟨r, A⟩, s⟩ ∈⇩∘ vrestriction D"
shows "⟨r, A⟩ ∈⇩∘ D" and "s = r ↾⇩∘ A"
using assms unfolding vrestriction_def by auto
lemma vrestrictionE[elim]:
assumes "x ∈⇩∘ vrestriction D" and "D ⊆⇩∘ R ×⇩∘ X"
obtains r A where "x = ⟨⟨r, A⟩, r ↾⇩∘ A⟩" and "r ∈⇩∘ R" and "A ∈⇩∘ X"
using assms unfolding vrestriction_def by auto
lemma app_vrestrictionI[intro!]:
assumes "a ∈⇩∘ A" and "b ∈⇩∘ A" and "⟨a, b⟩ ∈⇩∘ r"
shows "⟨a, b⟩ ∈⇩∘ r ↾⇩∘ A"
using assms unfolding vrestriction_def by simp
lemma app_vrestrictionD[dest]:
assumes "⟨a, b⟩ ∈⇩∘ r ↾⇩∘ A"
shows "a ∈⇩∘ A" and "b ∈⇩∘ A" and "⟨a, b⟩ ∈⇩∘ r"
using assms unfolding vrestriction_def by auto
lemma app_vrestrictionE[elim]:
assumes "x ∈⇩∘ r ↾⇩∘ A"
obtains a b where "x = ⟨a, b⟩" and "a ∈⇩∘ A" and "b ∈⇩∘ A" and "⟨a, b⟩ ∈⇩∘ r"
using assms unfolding vrestriction_def by clarsimp
text‹Set operations.›
lemma vrestriction_on_vempty[simp]: "r ↾⇩∘ 0 = 0"
by (auto intro!: vsubset_antisym)
lemma vrestriction_vempty[simp]: "0 ↾⇩∘ A = 0" by auto
lemma vrestriction_vsingleton_in[simp]:
assumes "a ∈⇩∘ A" and "b ∈⇩∘ A"
shows "set {⟨a, b⟩} ↾⇩∘ A = set {⟨a, b⟩}"
using assms by auto
lemma vrestriction_vsingleton_nin_left[simp]:
assumes "a ∉⇩∘ A"
shows "set {⟨a, b⟩} ↾⇩∘ A = 0"
using assms by auto
lemma vrestriction_vsingleton_nin_right[simp]:
assumes "b ∉⇩∘ A"
shows "set {⟨a, b⟩} ↾⇩∘ A = 0"
using assms by auto
lemma vrestriction_mono:
assumes "A ⊆⇩∘ B"
shows "r ↾⇩∘ A ⊆⇩∘ r ↾⇩∘ B"
using assms by auto
lemma vrestriction_vinsert_nin[simp]:
assumes "a ∉⇩∘ A" and "b ∉⇩∘ A"
shows "(vinsert ⟨a, b⟩ r) ↾⇩∘ A = r ↾⇩∘ A"
using assms by auto
lemma vrestriction_vinsert_in:
assumes "a ∈⇩∘ A" and "b ∈⇩∘ A"
shows "(vinsert ⟨a, b⟩ r) ↾⇩∘ A = vinsert ⟨a, b⟩ (r ↾⇩∘ A)"
using assms by auto
lemma vrestriction_vintersection: "(r ∩⇩∘ s) ↾⇩∘ A = r ↾⇩∘ A ∩⇩∘ s ↾⇩∘ A" by auto
lemma vrestriction_vunion: "(r ∪⇩∘ s) ↾⇩∘ A = r ↾⇩∘ A ∪⇩∘ s ↾⇩∘ A" by auto
lemma vrestriction_vdiff: "(r -⇩∘ s) ↾⇩∘ A = r ↾⇩∘ A -⇩∘ s ↾⇩∘ A" by auto
text‹Connections.›
lemma vrestriction_vid_on[simp]: "(vid_on A) ↾⇩∘ B = vid_on (A ∩⇩∘ B)" by auto
lemma vrestriction_vconst_on_ex:
assumes "c ∈⇩∘ B"
shows "(vconst_on A c) ↾⇩∘ B = vconst_on (A ∩⇩∘ B) c"
using assms by auto
lemma vrestriction_vconst_on_nex:
assumes "c ∉⇩∘ B"
shows "(vconst_on A c) ↾⇩∘ B = 0"
using assms by auto
lemma vrestriction_vcomp[simp]: "(r ∘⇩∘ s) ↾⇩∘ A = (r ↾⇧r⇩∘ A) ∘⇩∘ (s ↾⇧l⇩∘ A)" by auto
lemma vrestriction_vconverse: "r¯⇩∘ ↾⇩∘ A = (r ↾⇩∘ A)¯⇩∘" by auto
text‹Previous connections.›
lemma vrrestriction_vlrestriction[simp]: "(r ↾⇧r⇩∘ A) ↾⇧l⇩∘ A = r ↾⇩∘ A" by auto
lemma vlrestriction_vrrestriction[simp]: "(r ↾⇧l⇩∘ A) ↾⇧r⇩∘ A = r ↾⇩∘ A" by auto
lemma vrestriction_vlrestriction[simp]: "(r ↾⇩∘ A) ↾⇧l⇩∘ A = r ↾⇩∘ A" by auto
lemma vrestriction_vrrestriction[simp]: "(r ↾⇩∘ A) ↾⇧r⇩∘ A = r ↾⇩∘ A" by auto
text‹Special properties.›
lemma vrestriction_vsubset_vpairs: "r ↾⇩∘ A ⊆⇩∘ vpairs r" by auto
lemma vrestriction_vsubset_vtimes: "r ↾⇩∘ A ⊆⇩∘ A ×⇩∘ A" by auto
lemma vrestriction_vsubset_rel: "r ↾⇩∘ A ⊆⇩∘ r" by auto
subsection‹Properties›
subsubsection‹Domain›
definition vdomain :: "V ⇒ V"
where "vdomain D = (λr∈⇩∘D. set {a. ∃b. ⟨a, b⟩ ∈⇩∘ r})"
abbreviation app_vdomain :: "V ⇒ V" (‹𝒟⇩∘›)
where "𝒟⇩∘ r ≡ vdomain (set {r}) ⦇r⦈"
lemma app_vdomain_def: "𝒟⇩∘ r = set {a. ∃b. ⟨a, b⟩ ∈⇩∘ r}"
unfolding vdomain_def by simp
lemma vdomain_small[simp]: "small {a. ∃b. ⟨a, b⟩ ∈⇩∘ r}"
proof-
have ss: "{a. ∃b. ⟨a, b⟩ ∈⇩∘ r} ⊆ vfst ` elts r" using image_iff by fastforce
have small: "small (vfst ` elts r)" by (rule replacement) simp
show ?thesis by (rule smaller_than_small, rule small, rule ss)
qed
text‹Rules.›
lemma vdomainI[intro!]:
assumes "r ∈⇩∘ A"
shows "⟨r, 𝒟⇩∘ r⟩ ∈⇩∘ vdomain A"
using assms unfolding vdomain_def by auto
lemma vdomainD[dest]:
assumes "⟨r, s⟩ ∈⇩∘ vdomain A"
shows "r ∈⇩∘ A" and "s = 𝒟⇩∘ r"
using assms unfolding vdomain_def by auto
lemma vdomainE[elim]:
assumes "x ∈⇩∘ vdomain A"
obtains r where "x = ⟨r, 𝒟⇩∘ r⟩" and "r ∈⇩∘ A"
using assms unfolding vdomain_def by auto
lemma app_vdomainI[intro]:
assumes "⟨a, b⟩ ∈⇩∘ r"
shows "a ∈⇩∘ 𝒟⇩∘ r"
using assms unfolding vdomain_def by auto
lemma app_vdomainD[dest]:
assumes "a ∈⇩∘ 𝒟⇩∘ r"
shows "∃b. ⟨a, b⟩ ∈⇩∘ r"
using assms unfolding vdomain_def by auto
lemma app_vdomainE[elim]:
assumes "a ∈⇩∘ 𝒟⇩∘ r"
obtains b where "⟨a, b⟩ ∈⇩∘ r"
using assms unfolding vdomain_def by clarsimp
lemma vdomain_iff: "a ∈⇩∘ 𝒟⇩∘ r ⟷ (∃y. ⟨a, y⟩ ∈⇩∘ r)" by auto
text‹Set operations.›
lemma vdomain_vempty[simp]: "𝒟⇩∘ 0 = 0" by (auto intro!: vsubset_antisym)
lemma vdomain_vsingleton[simp]: "𝒟⇩∘ (set {⟨a, b⟩}) = set {a}" by auto
lemma vdomain_vdoubleton[simp]: "𝒟⇩∘ (set {⟨a, b⟩, ⟨c, d⟩}) = set {a, c}"
by (auto simp: vinsert_set_insert_eq)
lemma vdomain_mono:
assumes "r ⊆⇩∘ s"
shows "𝒟⇩∘ r ⊆⇩∘ 𝒟⇩∘ s"
using assms by blast
lemma vdomain_vinsert[simp]: "𝒟⇩∘ (vinsert ⟨a, b⟩ r) = vinsert a (𝒟⇩∘ r)"
by (auto intro!: vsubset_antisym)
lemma vdomain_vunion: "𝒟⇩∘ (A ∪⇩∘ B) = 𝒟⇩∘ A ∪⇩∘ 𝒟⇩∘ B"
by (auto intro!: vsubset_antisym)
lemma vdomain_vintersection_vsubset: "𝒟⇩∘ (A ∩⇩∘ B) ⊆⇩∘ 𝒟⇩∘ A ∩⇩∘ 𝒟⇩∘ B" by auto
lemma vdomain_vdiff_vsubset: "𝒟⇩∘ A -⇩∘ 𝒟⇩∘ B ⊆⇩∘ 𝒟⇩∘ (A -⇩∘ B)" by auto
text‹Connections.›
lemma vdomain_vid_on[simp]: "𝒟⇩∘ (vid_on A) = A"
by (auto intro!: vsubset_antisym)
lemma vdomain_vconst_on[simp]: "𝒟⇩∘ (vconst_on A c) = A"
by (auto intro!: vsubset_antisym)
lemma vdomain_VLambda[simp]: "𝒟⇩∘ (λa∈⇩∘A. f a) = A"
by (auto intro!: vsubset_antisym)
lemma vdomain_vlrestriction: "𝒟⇩∘ (r ↾⇧l⇩∘ A) = 𝒟⇩∘ r ∩⇩∘ A" by auto
lemma vdomain_vlrestriction_vsubset:
assumes "A ⊆⇩∘ 𝒟⇩∘ r"
shows "𝒟⇩∘ (r ↾⇧l⇩∘ A) = A"
using assms by (auto simp: vdomain_vlrestriction)
text‹Special properties.›
lemma vdomain_vsubset_vtimes:
assumes "vpairs r ⊆⇩∘ x ×⇩∘ y"
shows "𝒟⇩∘ r ⊆⇩∘ x"
using assms by auto
subsubsection‹Range›
definition vrange :: "V ⇒ V"
where "vrange D = (λr∈⇩∘D. set {b. ∃a. ⟨a, b⟩ ∈⇩∘ r})"
abbreviation app_vrange :: "V ⇒ V" (‹ℛ⇩∘›)
where "ℛ⇩∘ r ≡ vrange (set {r}) ⦇r⦈"
lemma app_vrange_def: "ℛ⇩∘ r = set {b. ∃a. ⟨a, b⟩ ∈⇩∘ r}"
unfolding vrange_def by simp
lemma vrange_small[simp]: "small {b. ∃a. ⟨a, b⟩ ∈⇩∘ r}"
proof-
have ss: "{b. ∃a. ⟨a, b⟩ ∈⇩∘ r} ⊆ vsnd ` elts r" using image_iff by fastforce
have small: "small (vsnd ` elts r)" by (rule replacement) simp
show ?thesis by (rule smaller_than_small, rule small, rule ss)
qed
text‹Rules.›
lemma vrangeI[intro]:
assumes "r ∈⇩∘ A"
shows "⟨r, ℛ⇩∘ r⟩ ∈⇩∘ vrange A"
using assms unfolding vrange_def by auto
lemma vrangeD[dest]:
assumes "⟨r, s⟩ ∈⇩∘ vrange A"
shows "r ∈⇩∘ A" and "s = ℛ⇩∘ r"
using assms unfolding vrange_def by auto
lemma vrangeE[elim]:
assumes "x ∈⇩∘ vrange A"
obtains r where "x = ⟨r, ℛ⇩∘ r⟩" and "r ∈⇩∘ A"
using assms unfolding vrange_def by auto
lemma app_vrangeI[intro]:
assumes "⟨a, b⟩ ∈⇩∘ r"
shows "b ∈⇩∘ ℛ⇩∘ r"
using assms unfolding vrange_def by auto
lemma app_vrangeD[dest]:
assumes "b ∈⇩∘ ℛ⇩∘ r"
shows "∃a. ⟨a, b⟩ ∈⇩∘ r"
using assms unfolding vrange_def by simp
lemma app_vrangeE[elim]:
assumes "b ∈⇩∘ ℛ⇩∘ r"
obtains a where "⟨a, b⟩ ∈⇩∘ r"
using assms unfolding vrange_def by clarsimp
lemma vrange_iff: "b ∈⇩∘ ℛ⇩∘ r ⟷ (∃a. ⟨a, b⟩ ∈⇩∘ r)" by auto
text‹Set operations.›
lemma vrange_vempty[simp]: "ℛ⇩∘ 0 = 0" by (auto intro!: vsubset_antisym)
lemma vrange_vsingleton[simp]: "ℛ⇩∘ (set {⟨a, b⟩}) = set {b}" by auto
lemma vrange_vdoubleton[simp]: "ℛ⇩∘ (set {⟨a, b⟩, ⟨c, d⟩}) = set {b, d}"
by (auto simp: vinsert_set_insert_eq)
lemma vrange_mono:
assumes "r ⊆⇩∘ s"
shows "ℛ⇩∘ r ⊆⇩∘ ℛ⇩∘ s"
using assms by force
lemma vrange_vinsert[simp]: "ℛ⇩∘ (vinsert ⟨a, b⟩ r) = vinsert b (ℛ⇩∘ r)"
by (auto intro!: vsubset_antisym)
lemma vrange_vunion: "ℛ⇩∘ (r ∪⇩∘ s) = ℛ⇩∘ r ∪⇩∘ ℛ⇩∘ s"
by (auto intro!: vsubset_antisym)
lemma vrange_vintersection_vsubset: "ℛ⇩∘ (r ∩⇩∘ s) ⊆⇩∘ ℛ⇩∘ r ∩⇩∘ ℛ⇩∘ s" by auto
lemma vrange_vdiff_vsubset: "ℛ⇩∘ r -⇩∘ ℛ⇩∘ s ⊆⇩∘ ℛ⇩∘ (r -⇩∘ s)" by auto
text‹Connections.›
lemma vrange_vid_on[simp]: "ℛ⇩∘ (vid_on A) = A" by (auto intro!: vsubset_antisym)
lemma vrange_vconst_on_vempty[simp]: "ℛ⇩∘ (vconst_on 0 c) = 0" by auto
lemma vrange_vconst_on_ne[simp]:
assumes "A ≠ 0"
shows "ℛ⇩∘ (vconst_on A c) = set {c}"
using assms by (auto intro!: vsubset_antisym)
lemma vrange_VLambda: "ℛ⇩∘ (λa∈⇩∘A. f a) = set (f ` elts A)"
by (intro vsubset_antisym vsubsetI) auto
lemma vrange_vrrestriction: "ℛ⇩∘ (r ↾⇧r⇩∘ A) = ℛ⇩∘ r ∩⇩∘ A" by auto
text‹Previous connections›
lemma vdomain_vconverse[simp]: "𝒟⇩∘ (r¯⇩∘) = ℛ⇩∘ r"
by (auto intro!: vsubset_antisym)
lemma vrange_vconverse[simp]: "ℛ⇩∘ (r¯⇩∘) = 𝒟⇩∘ r"
by (auto intro!: vsubset_antisym)
text‹Special properties.›
lemma vrange_iff_vdomain: "b ∈⇩∘ ℛ⇩∘ r ⟷ (∃a∈⇩∘𝒟⇩∘ r. ⟨a, b⟩ ∈⇩∘ r)" by auto
lemma vrange_vsubset_vtimes:
assumes "vpairs r ⊆⇩∘ x ×⇩∘ y"
shows "ℛ⇩∘ r ⊆⇩∘ y"
using assms by auto
lemma vrange_VLambda_vsubset:
assumes "⋀x. x ∈⇩∘ A ⟹ f x ∈⇩∘ B"
shows "ℛ⇩∘ (VLambda A f) ⊆⇩∘ B"
using assms by auto
lemma vpairs_vsubset_vdomain_vrange[simp]: "vpairs r ⊆⇩∘ 𝒟⇩∘ r ×⇩∘ ℛ⇩∘ r"
by (rule vsubsetI) auto
lemma vrange_vsubset:
assumes "⋀x y. ⟨x, y⟩ ∈⇩∘ r ⟹ y ∈⇩∘ A"
shows "ℛ⇩∘ r ⊆⇩∘ A"
using assms by auto
subsubsection‹Field›
definition vfield :: "V ⇒ V"
where "vfield D = (λr∈⇩∘D. 𝒟⇩∘ r ∪⇩∘ ℛ⇩∘ r)"
abbreviation app_vfield :: "V ⇒ V" (‹ℱ⇩∘›)
where "ℱ⇩∘ r ≡ vfield (set {r}) ⦇r⦈"
lemma app_vfield_def: "ℱ⇩∘ r = 𝒟⇩∘ r ∪⇩∘ ℛ⇩∘ r" unfolding vfield_def by simp
text‹Rules.›
lemma vfieldI[intro!]:
assumes "r ∈⇩∘ A"
shows "⟨r, ℱ⇩∘ r⟩ ∈⇩∘ vfield A"
using assms unfolding vfield_def by auto
lemma vfieldD[dest]:
assumes "⟨r, s⟩ ∈⇩∘ vfield A"
shows "r ∈⇩∘ A" and "s = ℱ⇩∘ r"
using assms unfolding vfield_def by auto
lemma vfieldE[elim]:
assumes "x ∈⇩∘ vfield A"
obtains r where "x = ⟨r, ℱ⇩∘ r⟩" and "r ∈⇩∘ A"
using assms unfolding vfield_def by auto
lemma app_vfieldI1[intro]:
assumes "a ∈⇩∘ 𝒟⇩∘ r ∪⇩∘ ℛ⇩∘ r"
shows "a ∈⇩∘ ℱ⇩∘ r"
using assms unfolding vfield_def by simp
lemma app_vfieldI2[intro]:
assumes "⟨a, b⟩ ∈⇩∘ r"
shows "a ∈⇩∘ ℱ⇩∘ r"
using assms by auto
lemma app_vfieldI3[intro]:
assumes "⟨a, b⟩ ∈⇩∘ r"
shows "b ∈⇩∘ ℱ⇩∘ r"
using assms by auto
lemma app_vfieldD[dest]:
assumes "a ∈⇩∘ ℱ⇩∘ r"
shows "a ∈⇩∘ 𝒟⇩∘ r ∪⇩∘ ℛ⇩∘ r"
using assms unfolding vfield_def by simp
lemma app_vfieldE[elim]:
assumes "a ∈⇩∘ ℱ⇩∘ r" and "a ∈⇩∘ 𝒟⇩∘ r ∪⇩∘ ℛ⇩∘ r ⟹ P"
shows P
using assms by auto
lemma app_vfield_vpairE[elim]:
assumes "a ∈⇩∘ ℱ⇩∘ r"
obtains b where "⟨a, b⟩ ∈⇩∘ r ∨ ⟨b, a⟩ ∈⇩∘ r "
using assms unfolding app_vfield_def by blast
lemma vfield_iff: "a ∈⇩∘ ℱ⇩∘ r ⟷ (∃b. ⟨a, b⟩ ∈⇩∘ r ∨ ⟨b, a⟩ ∈⇩∘ r)" by auto
text‹Set operations.›
lemma vfield_vempty[simp]: "ℱ⇩∘ 0 = 0" by (auto intro!: vsubset_antisym)
lemma vfield_vsingleton[simp]: "ℱ⇩∘ (set {⟨a, b⟩}) = set {a, b}"
by (simp add: app_vfield_def vinsert_set_insert_eq)
lemma vfield_vdoubleton[simp]: "ℱ⇩∘ (set {⟨a, b⟩, ⟨c, d⟩}) = set {a, b, c, d}"
by (auto simp: vinsert_set_insert_eq)
lemma vfield_mono:
assumes "r ⊆⇩∘ s"
shows "ℱ⇩∘ r ⊆⇩∘ ℱ⇩∘ s"
using assms by fastforce
lemma vfield_vinsert[simp]: "ℱ⇩∘ (vinsert ⟨a, b⟩ r) = set {a, b} ∪⇩∘ ℱ⇩∘ r"
by (auto intro!: vsubset_antisym)
lemma vfield_vunion[simp]: "ℱ⇩∘ (r ∪⇩∘ s) = ℱ⇩∘ r ∪⇩∘ ℱ⇩∘ s"
by (auto intro!: vsubset_antisym)
text‹Connections.›
lemma vid_on_vfield[simp]: "ℱ⇩∘ (vid_on A) = A" by (auto intro!: vsubset_antisym)
lemma vconst_on_vfield_ne[intro, simp]:
assumes "A ≠ 0"
shows "ℱ⇩∘ (vconst_on A c) = vinsert c A"
using assms by (auto intro!: vsubset_antisym)
lemma vconst_on_vfield_vempty[simp]: "ℱ⇩∘ (vconst_on 0 c) = 0" by auto
lemma vfield_vconverse[simp]: "ℱ⇩∘ (r¯⇩∘) = ℱ⇩∘ r"
by (auto intro!: vsubset_antisym)
subsubsection‹Image›
definition vimage :: "V ⇒ V"
where "vimage D = VLambda D (λ⟨r, A⟩. ℛ⇩∘ (r ↾⇧l⇩∘ A))"
abbreviation app_vimage :: "V ⇒ V ⇒ V" (infixr ‹`⇩∘› 90)
where "r `⇩∘ A ≡ vimage (set {⟨r, A⟩}) ⦇⟨r, A⟩⦈"
lemma app_vimage_def: "r `⇩∘ A = ℛ⇩∘ (r ↾⇧l⇩∘ A)" unfolding vimage_def by simp
lemma vimage_small[simp]: "small {b. ∃a∈⇩∘A. ⟨a, b⟩ ∈⇩∘ r}"
proof-
have ss: "{b. ∃a∈⇩∘A. ⟨a, b⟩ ∈⇩∘ r} ⊆ vsnd ` elts r"
using image_iff by fastforce
have small: "small (vsnd ` elts r)" by (rule replacement) simp
show ?thesis by (rule smaller_than_small, rule small, rule ss)
qed
lemma app_vimage_set_def: "r `⇩∘ A = set {b. ∃a∈⇩∘A. ⟨a, b⟩ ∈⇩∘ r}"
unfolding vimage_def vrange_def by auto
text‹Rules.›
lemma vimageI[intro!]:
assumes "⟨r, A⟩ ∈⇩∘ D"
shows "⟨⟨r, A⟩, r `⇩∘ A⟩ ∈⇩∘ vimage D"
using assms unfolding vimage_def by (simp add: VLambda_iff2)
lemma vimageD[dest]:
assumes "⟨⟨r, A⟩, s⟩ ∈⇩∘ vimage D"
shows "⟨r, A⟩ ∈⇩∘ D" and "s = r `⇩∘ A"
using assms unfolding vimage_def by auto
lemma vimageE[elim]:
assumes "x ∈⇩∘ vimage (R ×⇩∘ X)"
obtains r A where "x = ⟨⟨r, A⟩, r `⇩∘ A⟩" and "r ∈⇩∘ R" and "A ∈⇩∘ X"
using assms unfolding vimage_def by auto
lemma app_vimageI1:
assumes "x ∈⇩∘ ℛ⇩∘ (r ↾⇧l⇩∘ A)"
shows "x ∈⇩∘ r `⇩∘ A"
using assms unfolding vimage_def by simp
lemma app_vimageI2[intro]:
assumes "⟨a, b⟩ ∈⇩∘ r" and "a ∈⇩∘ A"
shows "b ∈⇩∘ r `⇩∘ A"
using assms app_vimageI1 by auto
lemma app_vimageD[dest]:
assumes "x ∈⇩∘ r `⇩∘ A"
shows "x ∈⇩∘ ℛ⇩∘ (r ↾⇧l⇩∘ A)"
using assms unfolding vimage_def by simp
lemma app_vimageE[elim]:
assumes "b ∈⇩∘ r `⇩∘ A"
obtains a where "⟨a, b⟩ ∈⇩∘ r" and "a ∈⇩∘ A"
using assms unfolding vimage_def by auto
lemma app_vimage_iff: "b ∈⇩∘ r `⇩∘ A ⟷ (∃a∈⇩∘A. ⟨a, b⟩ ∈⇩∘ r)" by auto
text‹Set operations.›
lemma vimage_vempty[simp]: "0 `⇩∘ A = 0" by (auto intro!: vsubset_antisym)
lemma vimage_of_vempty[simp]: "r `⇩∘ 0 = 0" by (auto intro!: vsubset_antisym)
lemma vimage_vsingleton: "r `⇩∘ set {a} = set {b. ⟨a, b⟩ ∈⇩∘ r}"
proof-
have "{b. ⟨a, b⟩ ∈⇩∘ r} ⊆ {b. ∃a. ⟨a, b⟩ ∈⇩∘ r}" by auto
then have [simp]: "small {b. ⟨a, b⟩ ∈⇩∘ r}"
by (rule smaller_than_small[OF vrange_small[of r]])
show ?thesis using app_vimage_set_def by auto
qed
lemma vimage_vsingleton_in[intro, simp]:
assumes "a ∈⇩∘ A"
shows "set {⟨a, b⟩} `⇩∘ A = set {b}"
using assms by auto
lemma vimage_vsingleton_nin[intro, simp]:
assumes "a ∉⇩∘ A"
shows "set {⟨a, b⟩} `⇩∘ A = 0"
using assms by auto
lemma vimage_vsingleton_vinsert[simp]: "set {⟨a, b⟩} `⇩∘ vinsert a A = set {b}"
by auto
lemma vimage_mono:
assumes "r' ⊆⇩∘ r" and "A' ⊆⇩∘ A"
shows "(r' `⇩∘ A') ⊆⇩∘ (r `⇩∘ A)"
using assms by fastforce
lemma vimage_vinsert: "r `⇩∘ (vinsert a A) = r `⇩∘ set {a} ∪⇩∘ r `⇩∘ A"
by (auto intro!: vsubset_antisym)
lemma vimage_vunion_left: "(r ∪⇩∘ s) `⇩∘ A = r `⇩∘ A ∪⇩∘ s `⇩∘ A"
by (auto intro!: vsubset_antisym)
lemma vimage_vunion_right: "r `⇩∘ (A ∪⇩∘ B) = r `⇩∘ A ∪⇩∘ r `⇩∘ B"
by (auto intro!: vsubset_antisym)
lemma vimage_vintersection: "r `⇩∘ (A ∩⇩∘ B) ⊆⇩∘ r `⇩∘ A ∩⇩∘ r `⇩∘ B" by auto
lemma vimage_vdiff: "r `⇩∘ A -⇩∘ r `⇩∘ B ⊆⇩∘ r `⇩∘ (A -⇩∘ B)" by auto
text‹Previous set operations.›
lemma VPow_vinsert:
"VPow (vinsert a A) = VPow A ∪⇩∘ ((λx∈⇩∘VPow A. vinsert a x) `⇩∘ VPow A)"
proof(intro vsubset_antisym vsubsetI)
fix x assume "x ∈⇩∘ VPow (vinsert a A)"
then have "x ⊆⇩∘ vinsert a A" by simp
then consider "x ⊆⇩∘ A" | "a ∈⇩∘ x" by auto
then show "x ∈⇩∘ VPow A ∪⇩∘ (λx∈⇩∘VPow A. vinsert a x) `⇩∘ VPow A"
proof cases
case 1 then show ?thesis by simp
next
case 2
define x' where "x' = x -⇩∘ set {a}"
with 2 have "x = vinsert a x'" and "a ∉⇩∘ x'" by auto
with ‹x ⊆⇩∘ vinsert a A› show ?thesis
unfolding vimage_def
by (fastforce simp: vsubset_vinsert vlrestriction_VLambda)
qed
qed (elim vunionE, auto)
text‹Special properties.›
lemma vimage_vsingleton_iff[iff]: "b ∈⇩∘ r `⇩∘ set {a} ⟷ ⟨a, b⟩ ∈⇩∘ r" by auto
lemma vimage_is_vempty[iff]: "r `⇩∘ A = 0 ⟷ vdisjnt (𝒟⇩∘ r) A" by fastforce
lemma vcomp_vimage_vtimes_right:
assumes "r `⇩∘ Y = Z"
shows "r ∘⇩∘ (X ×⇩∘ Y) = X ×⇩∘ Z"
proof(intro vsubset_antisym vsubsetI)
fix x assume x: "x ∈⇩∘ r ∘⇩∘ (X ×⇩∘ Y)"
then obtain a c where x_def: "x = ⟨a, c⟩" and "a ∈⇩∘ X" and "c ∈⇩∘ ℛ⇩∘ r" by auto
with x obtain b where "⟨a, b⟩ ∈⇩∘ X ×⇩∘ Y" and "⟨b, c⟩ ∈⇩∘ r" by clarsimp
then show "x ∈⇩∘ X ×⇩∘ Z" unfolding x_def using assms by auto
next
fix x assume "x ∈⇩∘ X ×⇩∘ Z"
then obtain a c where x_def: "x = ⟨a, c⟩" and "a ∈⇩∘ X" and "c ∈⇩∘ Z" by auto
then show "x ∈⇩∘ r ∘⇩∘ X ×⇩∘ Y"
using assms unfolding x_def by (meson VSigmaI app_vimageE vcompI)
qed
text‹Connections.›
lemma vid_on_vimage[simp]: "vid_on A `⇩∘ B = A ∩⇩∘ B"
by (auto intro!: vsubset_antisym)
lemma vimage_vconst_on_ne[simp]:
assumes "B ∩⇩∘ A ≠ 0"
shows "vconst_on A c `⇩∘ B = set {c}"
using assms by auto
lemma vimage_vconst_on_vempty[simp]:
assumes "vdisjnt A B"
shows "vconst_on A c `⇩∘ B = 0"
using assms by auto
lemma vimage_vconst_on_vsubset_vconst: "vconst_on A c `⇩∘ B ⊆⇩∘ set {c}" by auto
lemma vimage_VLambda_vrange: "(λa∈⇩∘A. f a) `⇩∘ B = ℛ⇩∘ (λa∈⇩∘A ∩⇩∘ B. f a)"
unfolding vimage_def by (simp add: vlrestriction_VLambda)
lemma vimage_VLambda_vrange_rep: "(λa∈⇩∘A. f a) `⇩∘ A = ℛ⇩∘ (λa∈⇩∘A. f a)"
by (simp add: vimage_VLambda_vrange)
lemma vcomp_vimage: "(r ∘⇩∘ s) `⇩∘ A = r `⇩∘ (s `⇩∘ A)"
by (auto intro!: vsubset_antisym)
lemma vimage_vlrestriction[simp]: "(r ↾⇧l⇩∘ A) `⇩∘ B = r `⇩∘ (A ∩⇩∘ B)"
by (auto intro!: vsubset_antisym)
lemma vimage_vrrestriction[simp]: "(r ↾⇧r⇩∘ A) `⇩∘ B = A ∩⇩∘ r `⇩∘ B" by auto
lemma vimage_vrestriction[simp]: "(r ↾⇩∘ A) `⇩∘ B = A ∩⇩∘ (r `⇩∘ (A ∩⇩∘ B))" by auto
lemma vimage_vdomain: "r `⇩∘ 𝒟⇩∘ r = ℛ⇩∘ r" by (auto intro!: vsubset_antisym)
lemma vimage_eq_imp_vcomp:
assumes "r `⇩∘ A = s `⇩∘ B"
shows "(t ∘⇩∘ r) `⇩∘ A = (t ∘⇩∘ s) `⇩∘ B"
using assms by (metis vcomp_vimage)
text‹Previous connections.›
lemma vcomp_rel_vconst: "r ∘⇩∘ (vconst_on A c) = A ×⇩∘ (r `⇩∘ set {c})"
by auto
lemma vcomp_VLambda:
"(λb∈⇩∘((λa∈⇩∘A. g a) `⇩∘ A). f b) ∘⇩∘ (λa∈⇩∘A. g a) = (λa∈⇩∘A. (f ∘ g) a)"
using VLambda_iff1 by (auto intro!: vsubset_antisym)+
text‹Further special properties.›
lemma vimage_vsubset:
assumes "r ⊆⇩∘ A ×⇩∘ B"
shows "r `⇩∘ C ⊆⇩∘ B"
using assms by auto
lemma vimage_vdomain_vsubset: "r `⇩∘ A ⊆⇩∘ r `⇩∘ 𝒟⇩∘ r" by auto
lemma vdomain_vsubset_VUnion2: "𝒟⇩∘ r ⊆⇩∘ ⋃⇩∘(⋃⇩∘r)"
proof(intro vsubsetI)
fix x assume "x ∈⇩∘ 𝒟⇩∘ r"
then obtain y where "⟨x, y⟩ ∈⇩∘ r" by auto
then have "set {set {x}, set {x, y}} ∈⇩∘ r" unfolding vpair_def by auto
with insert_commute have xy_Ur: "set {x, y} ∈⇩∘ ⋃⇩∘r"
unfolding VUnion_iff by auto
define Ur where "Ur = ⋃⇩∘r"
from xy_Ur show "x ∈⇩∘ ⋃⇩∘(⋃⇩∘r)"
unfolding Ur_def[symmetric] by (auto dest: VUnionI)
qed
lemma vrange_vsubset_VUnion2: "ℛ⇩∘ r ⊆⇩∘ ⋃⇩∘(⋃⇩∘r)"
proof(intro vsubsetI)
fix y assume "y ∈⇩∘ ℛ⇩∘ r"
then obtain x where "⟨x, y⟩ ∈⇩∘ r" by auto
then have "set {set {x}, set {x, y}} ∈⇩∘ r" unfolding vpair_def by auto
with insert_commute have xy_Ur: "set {x, y} ∈⇩∘ ⋃⇩∘r"
unfolding VUnion_iff by auto
define Ur where "Ur = ⋃⇩∘r"
from xy_Ur show "y ∈⇩∘ ⋃⇩∘(⋃⇩∘r)"
unfolding Ur_def[symmetric] by (auto dest: VUnionI)
qed
lemma vfield_vsubset_VUnion2: "ℱ⇩∘ r ⊆⇩∘ ⋃⇩∘(⋃⇩∘r)"
using vdomain_vsubset_VUnion2 vrange_vsubset_VUnion2
by (auto simp: app_vfield_def)
subsubsection‹Inverse image›
definition invimage :: "V ⇒ V"
where "invimage D = VLambda D (λ⟨r, A⟩. r¯⇩∘ `⇩∘ A)"
abbreviation app_invimage :: "V ⇒ V ⇒ V" (infixr ‹-`⇩∘› 90)
where "r -`⇩∘ A ≡ invimage (set {⟨r, A⟩}) ⦇⟨r, A⟩⦈"
lemma app_invimage_def: "r -`⇩∘ A = r¯⇩∘ `⇩∘ A" unfolding invimage_def by simp
lemma invimage_small[simp]: "small {a. ∃b∈⇩∘A. ⟨a, b⟩ ∈⇩∘ r}"
proof-
have ss: "{a. ∃b∈⇩∘A. ⟨a, b⟩ ∈⇩∘ r} ⊆ vfst ` elts r"
using image_iff by fastforce
have small: "small (vfst ` elts r)" by (rule replacement) simp
show ?thesis by (rule smaller_than_small, rule small, rule ss)
qed
text‹Rules.›
lemma invimageI[intro!]:
assumes "⟨r, A⟩ ∈⇩∘ D"
shows "⟨⟨r, A⟩, r -`⇩∘ A⟩ ∈⇩∘ invimage D"
using assms unfolding invimage_def by (simp add: VLambda_iff2)
lemma invimageD[dest]:
assumes "⟨⟨r, A⟩, s⟩ ∈⇩∘ invimage D"
shows "⟨r, A⟩ ∈⇩∘ D" and "s = r -`⇩∘ A"
using assms unfolding invimage_def by auto
lemma invimageE[elim]:
assumes "x ∈⇩∘ invimage D" and "D ⊆⇩∘ R ×⇩∘ X"
obtains r A where "x = ⟨⟨r, A⟩, r -`⇩∘ A⟩" and "r ∈⇩∘ R" and "A ∈⇩∘ X"
using assms unfolding invimage_def by auto
lemma app_invimageI[intro]:
assumes "⟨a, b⟩ ∈⇩∘ r" and "b ∈⇩∘ A"
shows "a ∈⇩∘ r -`⇩∘ A"
using assms invimage_def by auto
lemma app_invimageD[dest]:
assumes "a ∈⇩∘ r -`⇩∘ A"
shows "a ∈⇩∘ 𝒟⇩∘ (r ↾⇧r⇩∘ A)"
using assms using invimage_def by auto
lemma app_invimageE[elim]:
assumes "a ∈⇩∘ r -`⇩∘ A"
obtains b where "⟨a, b⟩ ∈⇩∘ r" and "b ∈⇩∘ A"
using assms unfolding invimage_def by auto
lemma app_invimageI1:
assumes "a ∈⇩∘ 𝒟⇩∘ (r ↾⇧r⇩∘ A)"
shows "a ∈⇩∘ r -`⇩∘ A"
using assms unfolding vimage_def
by (simp add: invimage_def app_vimageI1 vlrestriction_vconverse)
lemma app_invimageD1:
assumes "a ∈⇩∘ r -`⇩∘ A"
shows "a ∈⇩∘ 𝒟⇩∘ (r ↾⇧r⇩∘ A)"
using assms by fastforce
lemma app_invimageE1:
assumes "a ∈⇩∘ r -`⇩∘ A " and "a ∈⇩∘ 𝒟⇩∘ (r ↾⇧r⇩∘ A) ⟹ P"
shows P
using assms unfolding invimage_def by auto
lemma app_invimageI2:
assumes "a ∈⇩∘ r¯⇩∘ `⇩∘ A"
shows "a ∈⇩∘ r -`⇩∘ A"
using assms unfolding invimage_def by simp
lemma app_invimageD2:
assumes "a ∈⇩∘ r -`⇩∘ A"
shows "a ∈⇩∘ r¯⇩∘ `⇩∘ A"
using assms unfolding invimage_def by simp
lemma app_invimageE2:
assumes "a ∈⇩∘ r -`⇩∘ A" and "a ∈⇩∘ r¯⇩∘ `⇩∘ A ⟹ P"
shows P
unfolding vimage_def by (simp add: assms app_invimageD2)
lemma invimage_iff: "a ∈⇩∘ r -`⇩∘ A ⟷ (∃b∈⇩∘A. ⟨a, b⟩ ∈⇩∘ r)" by auto
lemma invimage_iff1: "a ∈⇩∘ r -`⇩∘ A ⟷ a ∈⇩∘ 𝒟⇩∘ (r ↾⇧r⇩∘ A)" by auto
lemma invimage_iff2: "a ∈⇩∘ r -`⇩∘ A ⟷ a ∈⇩∘ r¯⇩∘ `⇩∘ A" by auto
text‹Set operations.›
lemma invimage_vempty[simp]: "0 -`⇩∘ A = 0" by (auto intro!: vsubset_antisym)
lemma invimage_of_vempty[simp]: "r -`⇩∘ 0 = 0" by (auto intro!: vsubset_antisym)
lemma invimage_vsingleton_in[intro, simp]:
assumes "b ∈⇩∘ A"
shows "set {⟨a, b⟩} -`⇩∘ A = set {a}"
using assms by auto
lemma invimage_vsingleton_nin[intro, simp]:
assumes "b ∉⇩∘ A"
shows "set {⟨a, b⟩} -`⇩∘ A = 0"
using assms by auto
lemma invimage_vsingleton_vinsert[intro, simp]:
"set {⟨a, b⟩} -`⇩∘ vinsert b A = set {a}"
by auto
lemma invimage_mono:
assumes "r' ⊆⇩∘ r" and "A' ⊆⇩∘ A"
shows "(r' -`⇩∘ A') ⊆⇩∘ (r -`⇩∘ A)"
using assms by fastforce
lemma invimage_vinsert: "r -`⇩∘ (vinsert a A) = r -`⇩∘ set {a} ∪⇩∘ r -`⇩∘ A"
by (auto intro!: vsubset_antisym)
lemma invimage_vunion_left: "(r ∪⇩∘ s) -`⇩∘ A = r -`⇩∘ A ∪⇩∘ s -`⇩∘ A"
by (auto intro!: vsubset_antisym)
lemma invimage_vunion_right: "r -`⇩∘ (A ∪⇩∘ B) = r -`⇩∘ A ∪⇩∘ r -`⇩∘ B"
by (auto intro!: vsubset_antisym)
lemma invimage_vintersection: "r -`⇩∘ (A ∩⇩∘ B) ⊆⇩∘ r -`⇩∘ A ∩⇩∘ r -`⇩∘ B" by auto
lemma invimage_vdiff: "r -`⇩∘ A -⇩∘ r -`⇩∘ B ⊆⇩∘ r -`⇩∘ (A -⇩∘ B)" by auto
text‹Special properties.›
lemma invimage_set_def: "r -`⇩∘ A = set {a. ∃b∈⇩∘A. ⟨a, b⟩ ∈⇩∘ r}" by fastforce
lemma invimage_eq_vdomain_vrestriction: "r -`⇩∘ A = 𝒟⇩∘ (r ↾⇧r⇩∘ A)" by fastforce
lemma invimage_vrange[simp]: "r -`⇩∘ ℛ⇩∘ r = 𝒟⇩∘ r"
unfolding invimage_def by (auto intro!: vsubset_antisym)
lemma invimage_vrange_vsubset[simp]:
assumes "ℛ⇩∘ r ⊆⇩∘ B"
shows "r -`⇩∘ B = 𝒟⇩∘ r"
using assms unfolding app_invimage_def by (blast intro!: vsubset_antisym)
text‹Connections.›
lemma invimage_vid_on[simp]: "vid_on A -`⇩∘ B = A ∩⇩∘ B"
by (auto intro!: vsubset_antisym)
lemma invimage_vconst_on_vsubset_vdomain[simp]: "vconst_on A c -`⇩∘ B ⊆⇩∘ A"
unfolding invimage_def by auto
lemma invimage_vconst_on_ne[simp]:
assumes "c ∈⇩∘ B"
shows "vconst_on A c -`⇩∘ B = A"
by (simp add: assms invimage_eq_vdomain_vrestriction vrrestriction_vconst_on)
lemma invimage_vconst_on_vempty[simp]:
assumes "c ∉⇩∘ B"
shows "vconst_on A c -`⇩∘ B = 0"
using assms by auto
lemma invimage_vcomp: "(r ∘⇩∘ s) -`⇩∘ x = s -`⇩∘ (r -`⇩∘ x) "
by (simp add: invimage_def vconverse_vcomp vcomp_vimage)
lemma invimage_vconverse[simp]: "r¯⇩∘ -`⇩∘ A = r `⇩∘ A"
by (auto intro!: vsubset_antisym)
lemma invimage_vlrestriction[simp]: "(r ↾⇧l⇩∘ A) -`⇩∘ B = A ∩⇩∘ r -`⇩∘ B" by auto
lemma invimage_vrrestriction[simp]: "(r ↾⇧r⇩∘ A) -`⇩∘ B = (r -`⇩∘ (A ∩⇩∘ B))"
by (auto intro!: vsubset_antisym)
lemma invimage_vrestriction[simp]: "(r ↾⇩∘ A) -`⇩∘ B = A ∩⇩∘ (r -`⇩∘ (A ∩⇩∘ B))"
by blast
text‹Previous connections.›
lemma vcomp_vconst_on_rel_vtimes: "vconst_on A c ∘⇩∘ r = (r -`⇩∘ A) ×⇩∘ set {c}"
proof(intro vsubset_antisym vsubsetI)
fix x assume "x ∈⇩∘ r -`⇩∘ A ×⇩∘ set {c}"
then obtain a where x_def: "x = ⟨a, c⟩" and "a ∈⇩∘ r -`⇩∘ A" by auto
then obtain b where ab: "⟨a, b⟩ ∈⇩∘ r" and "b ∈⇩∘ A" using invimage_iff by auto
with ‹b ∈⇩∘ A› show "x ∈⇩∘ vconst_on A c ∘⇩∘ r" unfolding x_def by auto
qed auto
lemma vdomain_vcomp[simp]: "𝒟⇩∘ (r ∘⇩∘ s) = s -`⇩∘ 𝒟⇩∘ r" by blast
lemma vrange_vcomp[simp]: "ℛ⇩∘ (r ∘⇩∘ s) = r `⇩∘ ℛ⇩∘ s" by blast
lemma vdomain_vcomp_vsubset:
assumes "ℛ⇩∘ s ⊆⇩∘ 𝒟⇩∘ r"
shows "𝒟⇩∘ (r ∘⇩∘ s) = 𝒟⇩∘ s"
using assms by simp
subsection‹Classification of relations›
subsubsection‹Binary relation›
locale vbrelation =
fixes r :: V
assumes vbrelation: "vpairs r = r"
text‹Rules.›
lemma vpairs_eqI[intro!]:
assumes "⋀x. x ∈⇩∘ r ⟹ ∃a b. x = ⟨a, b⟩"
shows "vpairs r = r"
using assms by auto
lemma vpairs_eqD[dest]:
assumes "vpairs r = r"
shows "⋀x. x ∈⇩∘ r ⟹ ∃a b. x = ⟨a, b⟩"
using assms by auto
lemma vpairs_eqE[elim!]:
assumes "vpairs r = r" and "(⋀x. x ∈⇩∘ r ⟹ ∃a b. x = ⟨a, b⟩) ⟹ P"
shows P
using assms by auto
lemmas vbrelationI[intro!] = vbrelation.intro
lemmas vbrelationD[dest!] = vbrelation.vbrelation
lemma vbrelationE[elim!]:
assumes "vbrelation r" and "(vpairs r = r) ⟹ P"
shows P
using assms unfolding vbrelation_def by auto
lemma vbrelationE1[elim]:
assumes "vbrelation r" and "x ∈⇩∘ r"
obtains a b where "x = ⟨a, b⟩"
using assms by auto
lemma vbrelationD1[dest]:
assumes "vbrelation r" and "x ∈⇩∘ r"
shows "∃a b. x = ⟨a, b⟩"
using assms by auto
lemma (in vbrelation) vbrelation_vinE:
assumes "x ∈⇩∘ r"
obtains a b where "x = ⟨a, b⟩" and "a ∈⇩∘ 𝒟⇩∘ r" and "b ∈⇩∘ ℛ⇩∘ r"
using assms vbrelation_axioms by blast
text‹Set operations.›
lemma vbrelation_vsubset:
assumes "vbrelation s" and "r ⊆⇩∘ s"
shows "vbrelation r"
using assms by auto
lemma vbrelation_vinsert[simp]: "vbrelation (vinsert ⟨a, b⟩ r) ⟷ vbrelation r"
by auto
lemma (in vbrelation) vbrelation_vinsertI[intro, simp]:
"vbrelation (vinsert ⟨a, b⟩ r)"
using vbrelation_axioms by auto
lemma vbrelation_vinsertD[dest]:
assumes "vbrelation (vinsert ⟨a, b⟩ r)"
shows "vbrelation r"
using assms by auto
lemma vbrelation_vunion: "vbrelation (r ∪⇩∘ s) ⟷ vbrelation r ∧ vbrelation s"
by auto
lemma vbrelation_vunionI:
assumes "vbrelation r" and "vbrelation s"
shows "vbrelation (r ∪⇩∘ s)"
using assms by auto
lemma vbrelation_vunionD[dest]:
assumes "vbrelation (r ∪⇩∘ s)"
shows "vbrelation r" and "vbrelation s"
using assms by auto
lemma (in vbrelation) vbrelation_vintersectionI: "vbrelation (r ∩⇩∘ s)"
using vbrelation_axioms by auto
lemma (in vbrelation) vbrelation_vdiffI: "vbrelation (r -⇩∘ s)"
using vbrelation_axioms by auto
text‹Connections.›
lemma vbrelation_vempty: "vbrelation 0" by auto
lemma vbrelation_vsingleton: "vbrelation (set {⟨a, b⟩})" by auto
lemma vbrelation_vdoubleton: "vbrelation (set {⟨a, b⟩, ⟨c, d⟩})" by auto
lemma vbrelation_vid_on[simp]: "vbrelation (vid_on A)" by auto
lemma vbrelation_vconst_on[simp]: "vbrelation (vconst_on A c)" by auto
lemma vbrelation_VLambda[simp]: "vbrelation (VLambda A f)"
unfolding VLambda_def by (intro vbrelationI) auto
global_interpretation rel_VLambda: vbrelation ‹VLambda U f›
by (rule vbrelation_VLambda)
lemma vbrelation_vcomp:
assumes "vbrelation r" and "vbrelation s"
shows "vbrelation (r ∘⇩∘ s)"
using assms by auto
lemma (in vbrelation) vbrelation_vconverse: "vbrelation (r¯⇩∘)"
using vbrelation_axioms by clarsimp
lemma vbrelation_vlrestriction[intro, simp]: "vbrelation (r ↾⇧l⇩∘ A)" by auto
lemma vbrelation_vrrestriction[intro, simp]: "vbrelation (r ↾⇧r⇩∘ A)" by auto
lemma vbrelation_vrestriction[intro, simp]: "vbrelation (r ↾⇩∘ A)" by auto
text‹Previous connections.›
lemma (in vbrelation) vconverse_vconverse[simp]: "(r¯⇩∘)¯⇩∘ = r"
using vbrelation_axioms by auto
lemma vconverse_mono[simp]:
assumes "vbrelation r" and "vbrelation s"
shows "r¯⇩∘ ⊆⇩∘ s¯⇩∘ ⟷ r ⊆⇩∘ s"
using assms by (force intro: vconverse_vunion)+
lemma vconverse_inject[simp]:
assumes "vbrelation r" and "vbrelation s"
shows "r¯⇩∘ = s¯⇩∘ ⟷ r = s"
using assms by fast
lemma (in vbrelation) vconverse_vsubset_swap_2:
assumes "r¯⇩∘ ⊆⇩∘ s"
shows "r ⊆⇩∘ s¯⇩∘"
using assms vbrelation_axioms by auto
lemma (in vbrelation) vlrestriction_vdomain[simp]: "r ↾⇧l⇩∘ 𝒟⇩∘ r = r"
using vbrelation_axioms by (elim vbrelationE) auto
lemma (in vbrelation) vrrestriction_vrange[simp]: "r ↾⇧r⇩∘ ℛ⇩∘ r = r"
using vbrelation_axioms by (elim vbrelationE) auto
text‹Special properties.›
lemma brel_vsubset_vtimes:
"vbrelation r ⟷ r ⊆⇩∘ set (vfst ` elts r) ×⇩∘ set (vsnd ` elts r)"
by force
lemma vsubset_vtimes_vbrelation:
assumes "r ⊆⇩∘ A ×⇩∘ B"
shows "vbrelation r"
using assms by auto
lemma (in vbrelation) vbrelation_vintersection_vdomain:
assumes "vdisjnt (𝒟⇩∘ r) (𝒟⇩∘ s)"
shows "vdisjnt r s"
proof(intro vsubset_antisym vsubsetI)
fix x assume "x ∈⇩∘ r ∩⇩∘ s"
then obtain a b where "⟨a, b⟩ ∈⇩∘ r ∩⇩∘ s"
by (metis vbrelationE1 vbrelation_vintersectionI)
with assms show "x ∈⇩∘ 0" by auto
qed simp
lemma (in vbrelation) vbrelation_vintersection_vrange:
assumes "vdisjnt (ℛ⇩∘ r) (ℛ⇩∘ s)"
shows "vdisjnt r s"
proof(intro vsubset_antisym vsubsetI)
fix x assume "x ∈⇩∘ r ∩⇩∘ s"
then obtain a b where "⟨a, b⟩ ∈⇩∘ r ∩⇩∘ s"
by (metis vbrelationE1 vbrelation_vintersectionI)
with assms show "x ∈⇩∘ 0" by auto
qed simp
lemma (in vbrelation) vbrelation_vintersection_vfield:
assumes "vdisjnt (vfield r) (vfield s)"
shows "vdisjnt r s"
proof(intro vsubset_antisym vsubsetI)
fix x assume "x ∈⇩∘ r ∩⇩∘ s"
then obtain a b where "⟨a, b⟩ ∈⇩∘ r ∩⇩∘ s"
by (metis vbrelationE1 vbrelation_vintersectionI)
with assms show "x ∈⇩∘ 0" by auto
qed auto
lemma (in vbrelation) vdomain_vrange_vtimes: "r ⊆⇩∘ 𝒟⇩∘ r ×⇩∘ ℛ⇩∘ r"
using vbrelation by auto
lemma (in vbrelation) vbrelation_vsubset_vtimes:
assumes "𝒟⇩∘ r ⊆⇩∘ A" and "ℛ⇩∘ r ⊆⇩∘ B"
shows "r ⊆⇩∘ A ×⇩∘ B"
proof(intro vsubsetI)
fix x assume prems: "x ∈⇩∘ r"
with vbrelation obtain a b where x_def: "x = ⟨a, b⟩" by auto
from prems have a: "a ∈⇩∘ 𝒟⇩∘ r" and b: "b ∈⇩∘ ℛ⇩∘ r" unfolding x_def by auto
with assms have "a ∈⇩∘ A" and "b ∈⇩∘ B" by auto
then show "x ∈⇩∘ A ×⇩∘ B" unfolding x_def by simp
qed
lemma (in vbrelation) vlrestriction_vsubset_vrange[intro, simp]:
assumes "𝒟⇩∘ r ⊆⇩∘ A"
shows "r ↾⇧l⇩∘ A = r"
proof(intro vsubset_antisym)
show "r ⊆⇩∘ r ↾⇧l⇩∘ A"
by (rule vlrestriction_mono[OF assms, of r, unfolded vlrestriction_vdomain])
qed auto
lemma (in vbrelation) vrrestriction_vsubset_vrange[intro, simp]:
assumes "ℛ⇩∘ r ⊆⇩∘ B"
shows "r ↾⇧r⇩∘ B = r"
proof(intro vsubset_antisym)
show "r ⊆⇩∘ r ↾⇧r⇩∘ B"
by (rule vrrestriction_mono[OF assms, of r, unfolded vrrestriction_vrange])
qed auto
lemma (in vbrelation) vbrelation_vcomp_vid_on_left[simp]:
assumes "ℛ⇩∘ r ⊆⇩∘ A"
shows "vid_on A ∘⇩∘ r = r"
using assms by auto
lemma (in vbrelation) vbrelation_vcomp_vid_on_right[simp]:
assumes "𝒟⇩∘ r ⊆⇩∘ A"
shows "r ∘⇩∘ vid_on A = r"
using assms by auto
text‹Alternative forms of existing results.›
lemmas [intro, simp] = vbrelation.vconverse_vconverse
and [intro, simp] = vbrelation.vlrestriction_vsubset_vrange
and [intro, simp] = vbrelation.vrrestriction_vsubset_vrange
subsubsection‹Simple single-valued relation›
locale vsv = vbrelation r for r +
assumes vsv: "⟦ ⟨a, b⟩ ∈⇩∘ r; ⟨a, c⟩ ∈⇩∘ r ⟧ ⟹ b = c"
text‹Rules.›
lemmas (in vsv) [intro] = vsv_axioms
mk_ide rf vsv_def[unfolded vsv_axioms_def]
|intro vsvI[intro]|
|dest vsvD[dest]|
|elim vsvE[elim]|
text‹Set operations.›
lemma (in vsv) vsv_vinsert[simp]:
assumes "a ∉⇩∘ 𝒟⇩∘ r"
shows "vsv (vinsert ⟨a, b⟩ r)"
using assms vsv_axioms by blast
lemma vsv_vinsertD:
assumes "vsv (vinsert x r)"
shows "vsv r"
using assms by (intro vsvI) auto
lemma vsv_vunion[intro, simp]:
assumes "vsv r" and "vsv s" and "vdisjnt (𝒟⇩∘ r) (𝒟⇩∘ s)"
shows "vsv (r ∪⇩∘ s)"
proof
from assms have F: "⟦ ⟨a, b⟩ ∈⇩∘ r; ⟨a, c⟩ ∈⇩∘ s ⟧ ⟹ False" for a b c
using elts_0 by blast
fix a b c assume "⟨a, b⟩ ∈⇩∘ r ∪⇩∘ s" and "⟨a, c⟩ ∈⇩∘ r ∪⇩∘ s"
then consider
"⟨a, b⟩ ∈⇩∘ r ∧ ⟨a, c⟩ ∈⇩∘ r"
| "⟨a, b⟩ ∈⇩∘ r ∧ ⟨a, c⟩ ∈⇩∘ s"
| "⟨a, b⟩ ∈⇩∘ s ∧ ⟨a, c⟩ ∈⇩∘ r"
| "⟨a, b⟩ ∈⇩∘ s ∧ ⟨a, c⟩ ∈⇩∘ s"
by blast
then show "b = c" using assms by cases auto
qed (use assms in auto)
lemma (in vsv) vsv_vintersection[intro, simp]: "vsv (r ∩⇩∘ s)"
using vsv_axioms by blast
lemma (in vsv) vsv_vdiff[intro, simp]: "vsv (r -⇩∘ s)" using vsv_axioms by blast
text‹Connections.›
lemma vsv_vempty[simp]: "vsv 0" by auto
lemma vsv_vsingleton[simp]: "vsv (set {⟨a, b⟩})" by auto
global_interpretation rel_vsingleton: vsv ‹set {⟨a, b⟩}›
by (rule vsv_vsingleton)
lemma vsv_vdoubleton:
assumes "a ≠ c"
shows "vsv (set {⟨a, b⟩, ⟨c, d⟩})"
using assms by (auto simp: vinsert_set_insert_eq)
lemma vsv_vid_on[simp]: "vsv (vid_on A)" by auto
lemma vsv_vconst_on[simp]: "vsv (vconst_on A c)" by auto
lemma vsv_VLambda[simp]: "vsv (λa∈⇩∘A. f a)" by auto
global_interpretation rel_VLambda: vsv ‹(λa∈⇩∘A. f a)›
unfolding VLambda_def by (intro vsvI) auto
lemma vsv_vcomp:
assumes "vsv r" and "vsv s"
shows "vsv (r ∘⇩∘ s)"
using assms
by (intro vsvI; elim vsvE) (simp add: vbrelation_vcomp, metis vcompD)
lemma (in vsv) vsv_vlrestriction[intro, simp]: "vsv (r ↾⇧l⇩∘ A)"
using vsv_axioms by blast
lemma (in vsv) vsv_vrrestriction[intro, simp]: "vsv (r ↾⇧r⇩∘ A)"
using vsv_axioms by blast
lemma (in vsv) vsv_vrestriction[intro, simp]: "vsv (r ↾⇩∘ A)"
using vsv_axioms by blast
text‹Special properties.›
lemma small_vsv[simp]: "small {f. vsv f ∧ 𝒟⇩∘ f = A ∧ ℛ⇩∘ f ⊆⇩∘ B}"
proof-
have "small {f. f ⊆⇩∘ A ×⇩∘ B}" by (auto simp: small_iff)
moreover have "{f. vsv f ∧ 𝒟⇩∘ f = A ∧ ℛ⇩∘ f ⊆⇩∘ B} ⊆ {f. f ⊆⇩∘ A ×⇩∘ B}"
by auto
ultimately show "small {f. vsv f ∧ 𝒟⇩∘ f = A ∧ ℛ⇩∘ f ⊆⇩∘ B}"
by (auto simp: smaller_than_small)
qed
context vsv
begin
lemma vsv_ex1:
assumes "a ∈⇩∘ 𝒟⇩∘ r"
shows "∃!b. ⟨a, b⟩ ∈⇩∘ r"
using vsv_axioms assms by auto
lemma vsv_ex1_app1:
assumes "a ∈⇩∘ 𝒟⇩∘ r"
shows "b = r⦇a⦈ ⟷ ⟨a, b⟩ ∈⇩∘ r"
proof
assume b_def: "b = r⦇a⦈" show "⟨a, b⟩ ∈⇩∘ r"
unfolding app_def b_def by (rule theI') (rule vsv_ex1[OF assms])
next
assume [simp]: "⟨a, b⟩ ∈⇩∘ r"
from assms vsv_axioms vsvD have THE_b: "(THE y. ⟨a, y⟩ ∈⇩∘ r) = b" by auto
show "b = r⦇a⦈" unfolding app_def THE_b[symmetric] by (rule refl)
qed
lemma vsv_ex1_app2[iff]:
assumes "a ∈⇩∘ 𝒟⇩∘ r"
shows "r⦇a⦈ = b ⟷ ⟨a, b⟩ ∈⇩∘ r"
using vsv_ex1_app1[OF assms] by auto
lemma vsv_appI[intro, simp]:
assumes "⟨a, b⟩ ∈⇩∘ r"
shows "r⦇a⦈ = b"
using assms by (subgoal_tac ‹a ∈⇩∘ 𝒟⇩∘ r›) auto
lemma vsv_appE:
assumes "r⦇a⦈ = b" and "a ∈⇩∘ 𝒟⇩∘ r" and "⟨a, b⟩ ∈⇩∘ r ⟹ P"
shows P
using assms vsv_ex1_app1 by blast
lemma vdomain_vrange_is_vempty: "𝒟⇩∘ r = 0 ⟷ ℛ⇩∘ r = 0" by fastforce
lemma vsv_vrange_vempty:
assumes "ℛ⇩∘ r = 0"
shows "r = 0"
using assms vdomain_vrange_is_vempty vlrestriction_vdomain by auto
lemma vsv_vdomain_vempty_vrange_vempty:
assumes "𝒟⇩∘ r ≠ 0"
shows "ℛ⇩∘ r ≠ 0"
using assms by fastforce
lemma vsv_vdomain_vsingleton_vrange_vsingleton:
assumes "𝒟⇩∘ r = set {a}"
obtains b where "ℛ⇩∘ r = set {b}"
proof-
from assms obtain b where ab: "⟨a, b⟩ ∈⇩∘ r" by auto
then have "⟨a, c⟩ ∈⇩∘ r ⟹ c = b" for c by (auto simp: vsv)
moreover with assms have "⟨b, c⟩ ∈⇩∘ r ⟹ c = a" for c by force
ultimately have "⟨c, d⟩ ∈⇩∘ r ⟹ d = b" for c d
by (metis app_vdomainI assms vsingletonD)
with ab have "ℛ⇩∘ r = set {b}" by blast
with that show ?thesis by simp
qed
lemma vsv_vsubset_vimageE:
assumes "B ⊆⇩∘ r `⇩∘ A"
obtains C where "C ⊆⇩∘ A" and "B = r `⇩∘ C"
proof-
define C where C_def: "C = (r¯⇩∘ `⇩∘ B) ∩⇩∘ A"
then have "C ⊆⇩∘ A" by auto
moreover have "B = r `⇩∘ C"
unfolding C_def
proof(intro vsubset_antisym vsubsetI)
fix b assume "b ∈⇩∘ B"
with assms obtain a where "a ∈⇩∘ A" and "⟨a, b⟩ ∈⇩∘ r"
using app_vimageE vsubsetD by metis
then have "a ∈⇩∘ r¯⇩∘ `⇩∘ B ∩⇩∘ A" by (auto simp: ‹b ∈⇩∘ B›)
then show "b ∈⇩∘ r `⇩∘ (r¯⇩∘ `⇩∘ B ∩⇩∘ A)" by (auto intro: ‹⟨a, b⟩ ∈⇩∘ r›)
qed (use vsv_axioms in auto)
ultimately show ?thesis using that by auto
qed
lemma vsv_vimage_eqI[intro]:
assumes "a ∈⇩∘ 𝒟⇩∘ r" and "r⦇a⦈ = b" and "a ∈⇩∘ A"
shows "b ∈⇩∘ r `⇩∘ A"
using assms(2)[unfolded vsv_ex1_app2[OF assms(1)]] assms(3) by auto
lemma vsv_vimageI1:
assumes "a ∈⇩∘ 𝒟⇩∘ r" and "a ∈⇩∘ A"
shows "r⦇a⦈ ∈⇩∘ r `⇩∘ A"
using assms by (simp add: vsv_vimage_eqI)
lemma vsv_vimageI2:
assumes "a ∈⇩∘ 𝒟⇩∘ r"
shows "r⦇a⦈ ∈⇩∘ ℛ⇩∘ r"
using assms by (blast dest: vsv_ex1_app1)
lemma vsv_vimageI2':
assumes "b = r⦇a⦈" and "a ∈⇩∘ 𝒟⇩∘ r"
shows "b ∈⇩∘ ℛ⇩∘ r"
using assms by (blast dest: vsv_ex1_app1)
lemma vsv_value:
assumes "a ∈⇩∘ 𝒟⇩∘ r"
obtains b where "r⦇a⦈ = b" and "b ∈⇩∘ ℛ⇩∘ r"
using assms by (blast dest: vsv_ex1_app1)
lemma vsv_vimageE:
assumes "b ∈⇩∘ r `⇩∘ A"
obtains x where "r⦇x⦈ = b" and "x ∈⇩∘ A"
using assms vsv_axioms vsv_ex1_app2 by blast
lemma vsv_vimage_iff: "b ∈⇩∘ r `⇩∘ A ⟷ (∃a. a ∈⇩∘ A ∧ a ∈⇩∘ 𝒟⇩∘ r ∧ r⦇a⦈ = b)"
using vsv_axioms by (blast intro: vsv_ex1_app1[THEN iffD1])+
lemma vsv_vimage_vsingleton:
assumes "a ∈⇩∘ 𝒟⇩∘ r"
shows "r `⇩∘ set {a} = set {r⦇a⦈}"
using assms by force
lemma vsv_vimage_vsubsetI:
assumes "⋀a. ⟦ a ∈⇩∘ A; a ∈⇩∘ 𝒟⇩∘ r ⟧ ⟹ r⦇a⦈ ∈⇩∘ B"
shows "r `⇩∘ A ⊆⇩∘ B"
using assms by (metis vsv_vimage_iff vsubsetI)
lemma vsv_image_vsubset_iff:
"r `⇩∘ A ⊆⇩∘ B ⟷ (∀a∈⇩∘A. a ∈⇩∘ 𝒟⇩∘ r ⟶ r⦇a⦈ ∈⇩∘ B)"
by (auto simp: vsv_vimage_iff)
lemma vsv_vimage_vinsert:
assumes "a ∈⇩∘ 𝒟⇩∘ r"
shows "r `⇩∘ vinsert a A = vinsert (r⦇a⦈) (r `⇩∘ A)"
using assms vsv_vimage_iff by (intro vsubset_antisym vsubsetI) auto
lemma vsv_vinsert_vimage[intro, simp]:
assumes "a ∈⇩∘ 𝒟⇩∘ r" and "a ∈⇩∘ A"
shows "vinsert (r⦇a⦈) (r `⇩∘ A) = r `⇩∘ A"
using assms by auto
lemma vsv_is_VLambda[simp]: "(λx∈⇩∘𝒟⇩∘ r. r⦇x⦈) = r"
using vbrelation
by (auto simp: app_vdomainI VLambda_iff2 intro!: vsubset_antisym)
lemma vsv_is_VLambda_on_vlrestriction[intro, simp]:
assumes "A ⊆⇩∘ 𝒟⇩∘ r"
shows "(λx∈⇩∘A. r⦇x⦈) = r ↾⇧l⇩∘ A"
using assms by (force simp: VLambda_iff2)+
lemma pairwise_vimageI:
assumes "⋀x y.
⟦ x ∈⇩∘ 𝒟⇩∘ r; y ∈⇩∘ 𝒟⇩∘ r; x ≠ y; r⦇x⦈ ≠ r⦇y⦈ ⟧ ⟹ P (r⦇x⦈) (r⦇y⦈)"
shows "vpairwise P (ℛ⇩∘ r)"
by (intro vpairwiseI) (metis assms app_vdomainI app_vrangeE vsv_appI)
lemma vsv_vrange_vsubset:
assumes "⋀x. x ∈⇩∘ 𝒟⇩∘ r ⟹ r⦇x⦈ ∈⇩∘ A"
shows "ℛ⇩∘ r ⊆⇩∘ A"
using assms by fastforce
lemma vsv_vlrestriction_vinsert:
assumes "a ∈⇩∘ 𝒟⇩∘ r"
shows "r ↾⇧l⇩∘ vinsert a A = vinsert ⟨a, r⦇a⦈⟩ (r ↾⇧l⇩∘ A)"
using assms by (auto intro!: vsubset_antisym)
end
lemma vsv_eqI:
assumes "vsv r"
and "vsv s"
and "𝒟⇩∘ r = 𝒟⇩∘ s"
and "⋀a. a ∈⇩∘ 𝒟⇩∘ r ⟹ r⦇a⦈ = s⦇a⦈"
shows "r = s"
proof(intro vsubset_antisym vsubsetI)
interpret r: vsv r by (rule assms(1))
interpret s: vsv s by (rule assms(2))
fix x assume "x ∈⇩∘ r"
then obtain a b where x_def[simp]: "x = ⟨a, b⟩" and "a ∈⇩∘ 𝒟⇩∘ r"
by (elim r.vbrelation_vinE)
with ‹x ∈⇩∘ r› have "r⦇a⦈ = b" by simp
with assms ‹a ∈⇩∘ 𝒟⇩∘ r› show "x ∈⇩∘ s" by fastforce
next
interpret r: vsv r by (rule assms(1))
interpret s: vsv s by (rule assms(2))
fix x assume "x ∈⇩∘ s"
with assms(2) obtain a b where x_def[simp]: "x = ⟨a, b⟩" and "a ∈⇩∘ 𝒟⇩∘ s"
by (elim vsvE) blast
with assms ‹x ∈⇩∘ s› have "s⦇a⦈ = b" by blast
with assms ‹a ∈⇩∘ 𝒟⇩∘ s› show "x ∈⇩∘ r" by fastforce
qed
lemma (in vsv) vsv_VLambda_cong:
assumes "⋀a. a ∈⇩∘ 𝒟⇩∘ r ⟹ r⦇a⦈ = f a"
shows "(λa∈⇩∘𝒟⇩∘ r. f a) = r"
proof(rule vsv_eqI[symmetric])
show "𝒟⇩∘ r = 𝒟⇩∘ (VLambda (𝒟⇩∘ r) f)" by simp
fix a assume a: "a ∈⇩∘ 𝒟⇩∘ r"
then show "r⦇a⦈ = VLambda (𝒟⇩∘ r) f ⦇a⦈" using assms(1)[OF a] by auto
qed auto
lemma Axiom_of_Choice:
obtains f where "⋀x. x ∈⇩∘ A ⟹ x ≠ 0 ⟹ f⦇x⦈ ∈⇩∘ x" and "vsv f"
proof-
obtain f where f: "x ∈⇩∘ A ⟹ x ≠ 0 ⟹ f⦇x⦈ ∈⇩∘ x" for x
by (metis beta vemptyE)
define f' where "f' = (λx∈⇩∘A. f⦇x⦈)"
have "x ∈⇩∘ A ⟹ x ≠ 0 ⟹ f'⦇x⦈ ∈⇩∘ x" for x
unfolding f'_def using f by simp
moreover have "vsv f'" unfolding f'_def by simp
ultimately show ?thesis using that by auto
qed
lemma VLambda_eqI:
assumes "X = Y" and "⋀x. x ∈⇩∘ X ⟹ f x = g x"
shows "(λx∈⇩∘X. f x) = (λy∈⇩∘Y. g y)"
proof(rule vsv_eqI, unfold vdomain_VLambda; (intro assms(1) vsv_VLambda)?)
fix x assume "x ∈⇩∘ X"
with assms show "VLambda X f⦇x⦈ = VLambda Y g⦇x⦈" by simp
qed
lemma VLambda_vsingleton_def: "(λi∈⇩∘set {j}. f i) = (λi∈⇩∘set {j}. f j)" by auto
text‹Alternative forms of the available results.›
lemmas [iff] = vsv.vsv_ex1_app2
and [intro, simp] = vsv.vsv_appI
and [elim] = vsv.vsv_appE
and [intro] = vsv.vsv_vimage_eqI
and [simp] = vsv.vsv_vinsert_vimage
and [intro] = vsv.vsv_is_VLambda_on_vlrestriction
and [simp] = vsv.vsv_is_VLambda
and [intro, simp] = vsv.vsv_vintersection
and [intro, simp] = vsv.vsv_vdiff
and [intro, simp] = vsv.vsv_vlrestriction
and [intro, simp] = vsv.vsv_vrrestriction
and [intro, simp] = vsv.vsv_vrestriction
subsubsection‹Specialization of existing properties to single-valued relations.›
text‹Identity relation.›
lemma vid_on_eq_atI[intro, simp]:
assumes "a = b" and "a ∈⇩∘ A"
shows "vid_on A ⦇a⦈ = b"
using assms by auto
lemma vid_on_atI[intro, simp]:
assumes "a ∈⇩∘ A"
shows "vid_on A ⦇a⦈ = a"
using assms by auto
lemma vid_on_at_iff[intro, simp]:
assumes "a ∈⇩∘ A"
shows "vid_on A ⦇a⦈ = b ⟷ a = b"
using assms by auto
text‹Constant function.›
lemma vconst_on_atI[simp]:
assumes "a ∈⇩∘ A"
shows "vconst_on A c ⦇a⦈ = c"
using assms by auto
text‹Composition.›
lemma vcomp_atI[intro, simp]:
assumes "vsv r"
and "vsv s"
and "a ∈⇩∘ 𝒟⇩∘ r"
and "b ∈⇩∘ 𝒟⇩∘ s"
and "s⦇b⦈ = c"
and "r⦇a⦈ = b"
shows "(s ∘⇩∘ r)⦇a⦈ = c"
using assms by (auto simp: app_invimageI intro!: vsv_vcomp)
lemma vcomp_atD[dest]:
assumes "(s ∘⇩∘ r)⦇a⦈ = c"
and "vsv r"
and "vsv s"
and "a ∈⇩∘ 𝒟⇩∘ r"
and "r⦇a⦈ ∈⇩∘ 𝒟⇩∘ s"
shows "∃b. s⦇b⦈ = c ∧ r⦇a⦈ = b"
using assms by (metis vcomp_atI)
lemma vcomp_atE1:
assumes "(s ∘⇩∘ r)⦇a⦈ = c"
and "vsv r"
and "vsv s"
and "a ∈⇩∘ 𝒟⇩∘ r"
and "r⦇a⦈ ∈⇩∘ 𝒟⇩∘ s"
and "∃b. s⦇b⦈ = c ∧ r⦇a⦈ = b ⟹ P"
shows P
using assms assms vcomp_atD by blast
lemma vcomp_atE[elim]:
assumes "(s ∘⇩∘ r)⦇a⦈ = c"
and "vsv r"
and "vsv s"
and "a ∈⇩∘ 𝒟⇩∘ r"
and "r⦇a⦈ ∈⇩∘ 𝒟⇩∘ s"
obtains b where "r⦇a⦈ = b" and "s⦇b⦈ = c"
using assms that by (force elim!: vcomp_atE1)
lemma vsv_vcomp_at[simp]:
assumes "vsv r" and "vsv s" and "a ∈⇩∘ 𝒟⇩∘ r" and "r⦇a⦈ ∈⇩∘ 𝒟⇩∘ s"
shows "(s ∘⇩∘ r)⦇a⦈ = s⦇r⦇a⦈⦈"
using assms by auto
context vsv
begin
text‹Converse relation.›
lemma vconverse_atI[intro]:
assumes "a ∈⇩∘ 𝒟⇩∘ r" and "r⦇a⦈ = b"
shows "⟨b, a⟩ ∈⇩∘ r¯⇩∘"
using assms by auto
lemma vconverse_atD[dest]:
assumes "⟨b, a⟩ ∈⇩∘ r¯⇩∘"
shows "r⦇a⦈ = b"
using assms by auto
lemma vconverse_atE[elim]:
assumes "⟨b, a⟩ ∈⇩∘ r¯⇩∘" and "r⦇a⦈ = b ⟹ P"
shows P
using assms by auto
lemma vconverse_iff:
assumes "a ∈⇩∘ 𝒟⇩∘ r"
shows "⟨b, a⟩ ∈⇩∘ r¯⇩∘ ⟷ r⦇a⦈ = b"
using assms by auto
text‹Left restriction.›
interpretation vlrestriction: vsv ‹r ↾⇧l⇩∘ A› by (rule vsv_vlrestriction)
lemma vlrestriction_atI[intro, simp]:
assumes "a ∈⇩∘ 𝒟⇩∘ r" and "a ∈⇩∘ A" and "r⦇a⦈ = b"
shows "(r ↾⇧l⇩∘ A)⦇a⦈ = b"
using assms by (auto simp: vdomain_vlrestriction)
lemma vlrestriction_atD[dest]:
assumes "(r ↾⇧l⇩∘ A)⦇a⦈ = b" and "a ∈⇩∘ 𝒟⇩∘ r" and "a ∈⇩∘ A"
shows "r⦇a⦈ = b"
using assms by (auto simp: vdomain_vlrestriction)
lemma vlrestriction_atE1[elim]:
assumes "(r ↾⇧l⇩∘ A)⦇a⦈ = b"
and "a ∈⇩∘ 𝒟⇩∘ r"
and "a ∈⇩∘ A"
and "r⦇a⦈ = b ⟹ P"
shows P
using assms vlrestrictionD by blast
lemma vlrestriction_atE2[elim]:
assumes "x ∈⇩∘ r ↾⇧l⇩∘ A"
obtains a b where "x = ⟨a, b⟩" and "a ∈⇩∘ A" and "r⦇a⦈ = b"
using assms by auto
text‹Right restriction.›
interpretation vrrestriction: vsv ‹r ↾⇧r⇩∘ A› by (rule vsv_vrrestriction)
lemma vrrestriction_atI[intro, simp]:
assumes "a ∈⇩∘ 𝒟⇩∘ r" and "b ∈⇩∘ A" and "r⦇a⦈ = b"
shows "(r ↾⇧r⇩∘ A)⦇a⦈ = b"
using assms by (auto simp: app_vrrestrictionI)
lemma vrrestriction_atD[dest]:
assumes "(r ↾⇧r⇩∘ A)⦇a⦈ = b" and "a ∈⇩∘ r -`⇩∘ A"
shows "b ∈⇩∘ A" and "r⦇a⦈ = b"
using assms by force+
lemma vrrestriction_atE1[elim]:
assumes "(r ↾⇧r⇩∘ A)⦇a⦈ = b" and "a ∈⇩∘ r -`⇩∘ A" and "r⦇a⦈ = b ⟹ P"
shows P
using assms by (auto simp: vrrestriction_atD(2))
lemma vrrestriction_atE2[elim]:
assumes "x ∈⇩∘ r ↾⇧r⇩∘ A"
obtains a b where "x = ⟨a, b⟩" and "b ∈⇩∘ A" and "r⦇a⦈ = b"
using assms unfolding vrrestriction_def by auto
text‹Restriction.›
interpretation vrestriction: vsv ‹r ↾⇩∘ A› by (rule vsv_vrestriction)
lemma vlrestriction_app[intro, simp]:
assumes "a ∈⇩∘ 𝒟⇩∘ r" and "a ∈⇩∘ A"
shows "(r ↾⇧l⇩∘ A)⦇a⦈ = r⦇a⦈"
using assms by auto
lemma vrestriction_atD[dest]:
assumes "(r ↾⇩∘ A)⦇a⦈ = b" and "a ∈⇩∘ r -`⇩∘ A" and "a ∈⇩∘ A"
shows "b ∈⇩∘ A" and "r⦇a⦈ = b"
proof-
from assms have "a ∈⇩∘ 𝒟⇩∘ r" by auto
then show "r⦇a⦈ = b"
by
(
metis
assms
app_invimageD1
vrrestriction.vlrestriction_atD
vrrestriction_atD(2)
vrrestriction_vlrestriction
)
then show "b ∈⇩∘ A" using assms(2) by blast
qed
lemma vrestriction_atE1[elim]:
assumes "(r ↾⇩∘ A)⦇a⦈ = b"
and "a ∈⇩∘ r -`⇩∘ A"
and "a ∈⇩∘ A"
and "r⦇a⦈ = b ⟹ P"
shows P
using assms vrestriction_atD(2) by blast
lemma vrestriction_atE2[elim]:
assumes "x ∈⇩∘ r ↾⇩∘ A"
obtains a b where "x = ⟨a, b⟩" and "a ∈⇩∘ A" and "b ∈⇩∘ A" and "r⦇a⦈ = b"
using assms unfolding vrestriction_def by clarsimp
text‹Domain.›
lemma vdomain_atD:
assumes "a ∈⇩∘ 𝒟⇩∘ r"
shows "∃b∈⇩∘ℛ⇩∘ r. r⦇a⦈ = b"
using assms by (blast intro: vsv_vimageI2)
lemma vdomain_atE:
assumes "a ∈⇩∘ 𝒟⇩∘ r"
obtains b where "b ∈⇩∘ ℛ⇩∘ r" and "r⦇a⦈ = b"
using assms by auto
text‹Range.›
lemma vrange_atD:
assumes "b ∈⇩∘ ℛ⇩∘ r"
shows "∃a∈⇩∘𝒟⇩∘ r. r⦇a⦈ = b"
using assms by auto
lemma vrange_atE:
assumes "b ∈⇩∘ ℛ⇩∘ r"
obtains a where "a ∈⇩∘ 𝒟⇩∘ r" and "r⦇a⦈ = b"
using assms by auto
text‹Image.›
lemma vimage_set_eq_at:
"{b. ∃a∈⇩∘A ∩⇩∘ 𝒟⇩∘ r. r⦇a⦈ = b} = {b. ∃a∈⇩∘A. ⟨a, b⟩ ∈⇩∘ r}"
by (rule subset_antisym; rule subsetI; unfold mem_Collect_eq) auto
lemma vimage_small[simp]: "small {b. ∃a∈⇩∘A ∩⇩∘ 𝒟⇩∘ r. r⦇a⦈ = b}"
unfolding vimage_set_eq_at by auto
lemma vimage_set_def: "r `⇩∘ A = set {b. ∃a∈⇩∘A ∩⇩∘ 𝒟⇩∘ r. r⦇a⦈ = b}"
unfolding vimage_set_eq_at by (simp add: app_vimage_set_def)
lemma vimage_set_iff: "b ∈⇩∘ r `⇩∘ A ⟷ (∃a∈⇩∘A ∩⇩∘ 𝒟⇩∘ r. r⦇a⦈ = b)"
unfolding vimage_set_eq_at using vsv_vimage_iff by auto
text‹Further derived results.›
lemma vimage_image:
assumes "A ⊆⇩∘ 𝒟⇩∘ r"
shows "elts (r `⇩∘ A) = (λx. r⦇x⦈) ` (elts A)"
using vimage_def assms small_elts by blast
lemma vsv_vinsert_match_appI[intro, simp]:
assumes "a ∉⇩∘ 𝒟⇩∘ r"
shows "vinsert ⟨a, b⟩ r ⦇a⦈ = b"
using assms vsv_axioms by simp
lemma vsv_vinsert_no_match_appI:
assumes "a ∉⇩∘ 𝒟⇩∘ r" and "c ∈⇩∘ 𝒟⇩∘ r" and "r ⦇c⦈ = d"
shows "vinsert ⟨a, b⟩ r ⦇c⦈ = d"
using assms vsv_axioms by simp
lemma vsv_is_vconst_onI:
assumes "𝒟⇩∘ r = A" and "ℛ⇩∘ r = set {a}"
shows "r = vconst_on A a"
unfolding assms(1)[symmetric]
proof(cases ‹𝒟⇩∘ r = 0›)
case True
with assms show "r = vconst_on (𝒟⇩∘ r) a"
by (auto simp: vdomain_vrange_is_vempty)
next
case False
show "r = vconst_on (𝒟⇩∘ r) a"
proof(rule vsv_eqI)
fix a' assume prems: "a' ∈⇩∘ 𝒟⇩∘ r"
then obtain b where "r⦇a'⦈ = b" and "b ∈⇩∘ ℛ⇩∘ r" by auto
moreover then have "b = a" unfolding assms by simp
ultimately show "r⦇a'⦈ = vconst_on (𝒟⇩∘ r) a⦇a'⦈" by (simp add: prems)
qed auto
qed
lemma vsv_vdomain_vrange_vsingleton:
assumes "𝒟⇩∘ r = set {a}" and "ℛ⇩∘ r = set{b}"
shows "r = set {⟨a, b⟩}"
using assms vsv_is_vconst_onI by auto
end
text‹Alternative forms of existing results.›
lemmas [intro] = vsv.vconverse_atI
and vsv_vconverse_atD[dest] = vsv.vconverse_atD[rotated]
and vsv_vconverse_atE[elim] = vsv.vconverse_atE[rotated]
and [intro, simp] = vsv.vlrestriction_atI
and vsv_vlrestriction_atD[dest] = vsv.vlrestriction_atD[rotated]
and vsv_vlrestriction_atE1[elim] = vsv.vlrestriction_atE1[rotated]
and vsv_vlrestriction_atE2[elim] = vsv.vlrestriction_atE2[rotated]
and [intro, simp] = vsv.vrrestriction_atI
and vsv_vrrestriction_atD[dest] = vsv.vrrestriction_atD[rotated]
and vsv_vrrestriction_atE1[elim] = vsv.vrrestriction_atE1[rotated]
and vsv_vrrestriction_atE2[elim] = vsv.vrrestriction_atE2[rotated]
and [intro, simp] = vsv.vlrestriction_app
and vsv_vrestriction_atD[dest] = vsv.vrestriction_atD[rotated]
and vsv_vrestriction_atE1[elim] = vsv.vrestriction_atE1[rotated]
and vsv_vrestriction_atE2[elim] = vsv.vrestriction_atE2[rotated]
and vsv_vdomain_atD = vsv.vdomain_atD[rotated]
and vsv_vdomain_atE = vsv.vdomain_atE[rotated]
and vrange_atD = vsv.vrange_atD[rotated]
and vrange_atE = vsv.vrange_atE[rotated]
and vsv_vinsert_match_appI[intro, simp] = vsv.vsv_vinsert_match_appI
and vsv_vinsert_no_match_appI[intro, simp] =
vsv.vsv_vinsert_no_match_appI[rotated 3]
text‹Corollaries of the alternative forms of existing results.›
lemma vsv_vlrestriction_vrange:
assumes "vsv s" and "vsv (r ↾⇧l⇩∘ ℛ⇩∘ s)"
shows "vsv (r ∘⇩∘ s)"
proof(rule vsvI)
show "vbrelation (r ∘⇩∘ s)" by auto
fix a c c' assume "⟨a, c⟩ ∈⇩∘ r ∘⇩∘ s" "⟨a, c'⟩ ∈⇩∘ r ∘⇩∘ s"
then obtain b and b'
where ab: "⟨a, b⟩ ∈⇩∘ s"
and bc: "⟨b, c⟩ ∈⇩∘ r"
and ab': "⟨a, b'⟩ ∈⇩∘ s"
and b'c': "⟨b', c'⟩ ∈⇩∘ r"
by clarsimp
moreover then have "b ∈⇩∘ ℛ⇩∘ s" and "b' ∈⇩∘ ℛ⇩∘ s" by auto
ultimately have "⟨b, c⟩ ∈⇩∘ (r ↾⇧l⇩∘ ℛ⇩∘ s)" and "⟨b', c'⟩ ∈⇩∘ (r ↾⇧l⇩∘ ℛ⇩∘ s)" by auto
with ab ab' have "⟨a, c⟩ ∈⇩∘ (r ↾⇧l⇩∘ ℛ⇩∘ s) ∘⇩∘ s" and "⟨a, c'⟩ ∈⇩∘ (r ↾⇧l⇩∘ ℛ⇩∘ s) ∘⇩∘ s"
by blast+
moreover from assms have "vsv ((r ↾⇧l⇩∘ ℛ⇩∘ s) ∘⇩∘ s)" by (intro vsv_vcomp)
ultimately show "c = c'" by auto
qed
lemma vsv_vunion_app_right[simp]:
assumes "vsv r" and "vsv s" and "vdisjnt (𝒟⇩∘ r) (𝒟⇩∘ s)" and "x ∈⇩∘ 𝒟⇩∘ s"
shows "(r ∪⇩∘ s)⦇x⦈ = s⦇x⦈"
using assms vsubsetD by blast
lemma vsv_vunion_app_left[simp]:
assumes "vsv r" and "vsv s" and "vdisjnt (𝒟⇩∘ r) (𝒟⇩∘ s)" and "x ∈⇩∘ 𝒟⇩∘ r"
shows "(r ∪⇩∘ s)⦇x⦈ = r⦇x⦈"
using assms vsubsetD by blast
subsubsection‹One-to-one relation›
locale v11 = vsv r for r +
assumes vsv_vconverse: "vsv (r¯⇩∘)"
text‹Rules.›
lemmas (in v11) [intro] = v11_axioms
mk_ide rf v11_def[unfolded v11_axioms_def]
|intro v11I[intro]|
|dest v11D[dest]|
|elim v11E[elim]|
text‹Set operations.›
lemma (in v11) v11_vinsert[intro, simp]:
assumes "a ∉⇩∘ 𝒟⇩∘ r" and "b ∉⇩∘ ℛ⇩∘ r"
shows "v11 (vinsert ⟨a, b⟩ r)"
using assms v11_axioms
by (intro v11I; elim v11E) (simp_all add: vconverse_vinsert vsv.vsv_vinsert)
lemma v11_vinsertD:
assumes "v11 (vinsert x r)"
shows "v11 r"
using assms by (intro v11I) (auto simp: vsv_vinsertD)
lemma v11_vunion:
assumes "v11 r"
and "v11 s"
and "vdisjnt (𝒟⇩∘ r) (𝒟⇩∘ s)"
and "vdisjnt (ℛ⇩∘ r) (ℛ⇩∘ s)"
shows "v11 (r ∪⇩∘ s)"
proof
interpret r: v11 r by (rule assms(1))
interpret s: v11 s by (rule assms(2))
show "vsv (r ∪⇩∘ s)" by (simp add: assms v11D)
from assms show "vsv ((r ∪⇩∘ s)¯⇩∘)"
by (simp add: assms r.vsv_vconverse s.vsv_vconverse vconverse_vunion)
qed
lemma (in v11) v11_vintersection[intro, simp]: "v11 (r ∩⇩∘ s)"
using v11_axioms by (intro v11I) auto
lemma (in v11) v11_vdiff[intro, simp]: "v11 (r -⇩∘ s)"
using v11_axioms by (intro v11I) auto
text‹Special properties.›
lemma (in vsv) vsv_valneq_v11I:
assumes "⋀x y. ⟦ x ∈⇩∘ 𝒟⇩∘ r; y ∈⇩∘ 𝒟⇩∘ r; x ≠ y ⟧ ⟹ r⦇x⦈ ≠ r⦇y⦈"
shows "v11 r"
proof(intro v11I)
from vsv_axioms show "vsv r" by simp
show "vsv (r¯⇩∘)"
by
(
metis
assms
vbrelation_vconverse
vconverse_atD
app_vrangeI
vrange_vconverse
vsvI
)
qed
lemma (in vsv) vsv_valeq_v11I:
assumes "⋀x y. ⟦ x ∈⇩∘ 𝒟⇩∘ r; y ∈⇩∘ 𝒟⇩∘ r; r⦇x⦈ = r⦇y⦈ ⟧ ⟹ x = y"
shows "v11 r"
using assms vsv_valneq_v11I by auto
text‹Connections.›
lemma v11_vempty[simp]: "v11 0" by (simp add: v11I)
lemma v11_vsingleton[simp]: "v11 (set {⟨a, b⟩})" by auto
lemma v11_vdoubleton:
assumes "a ≠ c" and "b ≠ d"
shows "v11 (set {⟨a, b⟩, ⟨c, d⟩})"
using assms by (auto simp: vinsert_set_insert_eq)
lemma v11_vid_on[simp]: "v11 (vid_on A)" by auto
lemma v11_VLambda[intro]:
assumes "inj_on f (elts A)"
shows "v11 (λa∈⇩∘A. f a)"
proof(rule rel_VLambda.vsv_valneq_v11I)
fix x y
assume "x ∈⇩∘ 𝒟⇩∘ (λa∈⇩∘A. f a)" and "y ∈⇩∘ 𝒟⇩∘ (λa∈⇩∘A. f a)" and "x ≠ y"
then have "x ∈⇩∘ A" and "y ∈⇩∘ A" by auto
with assms ‹x ≠ y› have "f x ≠ f y" by (auto dest: inj_onD)
then show "(λa∈⇩∘A. f a)⦇x⦈ ≠ (λa∈⇩∘A. f a)⦇y⦈"
by (simp add: ‹x ∈⇩∘ A› ‹y ∈⇩∘ A›)
qed
lemma v11_vcomp:
assumes "v11 r" and "v11 s"
shows "v11 (r ∘⇩∘ s)"
using assms by (intro v11I; elim v11E) (auto simp: vsv_vcomp vconverse_vcomp)
context v11
begin
lemma v11_vconverse: "v11 (r¯⇩∘)" by (auto simp: vsv_axioms vsv_vconverse)
interpretation v11 ‹r¯⇩∘› by (rule v11_vconverse)
lemma v11_vlrestriction[intro, simp]: "v11 (r ↾⇧l⇩∘ A)"
using vsv_vrrestriction by (auto simp: vrrestriction_vconverse)
lemma v11_vrrestriction[intro, simp]: "v11 (r ↾⇧r⇩∘ A)"
using vsv_vlrestriction by (auto simp: vlrestriction_vconverse)
lemma v11_vrestriction[intro, simp]: "v11 (r ↾⇩∘ A)"
using vsv_vrestriction by (auto simp: vrestriction_vconverse)
end
text‹Further Special properties.›
context v11
begin
lemma v11_injective:
assumes "a ∈⇩∘ 𝒟⇩∘ r" and "b ∈⇩∘ 𝒟⇩∘ r" and "r⦇a⦈ = r⦇b⦈"
shows "a = b"
using assms v11_axioms by auto
lemma v11_double_pair:
assumes "a ∈⇩∘ 𝒟⇩∘ r" and "a' ∈⇩∘ 𝒟⇩∘ r" and "r⦇a⦈ = b" and "r⦇a'⦈ = b'"
shows "a = a' ⟷ b = b'"
using assms v11_axioms by auto
lemma v11_vrange_ex1_eq: "b ∈⇩∘ ℛ⇩∘ r ⟷ (∃!a∈⇩∘𝒟⇩∘ r. r⦇a⦈ = b)"
proof(rule iffI)
from app_vdomainI v11_injective show
"b ∈⇩∘ ℛ⇩∘ r ⟹ ∃!a. a ∈⇩∘ 𝒟⇩∘ r ∧ r⦇a⦈ = b"
by (elim app_vrangeE) auto
show "∃!a. a ∈⇩∘ 𝒟⇩∘ r ∧ r⦇a⦈ = b ⟹ b ∈⇩∘ ℛ⇩∘ r"
by (auto intro: vsv_vimageI2)
qed
lemma v11_VLambda_iff: "inj_on f (elts A) ⟷ v11 (λa∈⇩∘A. f a)"
by (rule iffI; (intro inj_onI | tactic‹all_tac›))
(auto simp: v11.v11_injective)
lemma v11_vimage_vpsubset_neq:
assumes "A ⊆⇩∘ 𝒟⇩∘ r" and "B ⊆⇩∘ 𝒟⇩∘ r" and "A ≠ B"
shows "r `⇩∘ A ≠ r `⇩∘ B"
proof-
from assms obtain a where AB: "a ∈⇩∘ A ∨ a ∈⇩∘ B" and nAB: "a ∉⇩∘ A ∨ a ∉⇩∘ B"
by auto
then have "r⦇a⦈ ∉⇩∘ r `⇩∘ A ∨ r⦇a⦈ ∉⇩∘ r `⇩∘ B"
unfolding vsv_vimage_iff by (metis assms(1,2) v11_injective vsubsetD)
moreover from AB nAB assms(1,2) have "r⦇a⦈ ∈⇩∘ r `⇩∘ A ∨ r⦇a⦈ ∈⇩∘ r `⇩∘ B"
by auto
ultimately show "r `⇩∘ A ≠ r `⇩∘ B" by clarsimp
qed
lemma v11_eq_iff[simp]:
assumes "a ∈⇩∘ 𝒟⇩∘ r" and "b ∈⇩∘ 𝒟⇩∘ r"
shows "r⦇a⦈ = r⦇b⦈ ⟷ a = b"
using assms v11_double_pair by blast
lemma v11_vcomp_vconverse: "r¯⇩∘ ∘⇩∘ r = vid_on (𝒟⇩∘ r)"
proof(intro vsubset_antisym vsubsetI)
fix x assume prems: "x ∈⇩∘ r¯⇩∘ ∘⇩∘ r"
then obtain a c where x_def: "x = ⟨a, c⟩" and a: "a ∈⇩∘ 𝒟⇩∘ r" by auto
with prems obtain b where "⟨a, b⟩ ∈⇩∘ r" and "⟨b, c⟩ ∈⇩∘ r¯⇩∘" by auto
with v11.vsv_vconverse v11_axioms have ca: "c = a" by auto
from a show "x ∈⇩∘ vid_on (𝒟⇩∘ r)" unfolding x_def ca by auto
next
fix x assume "x ∈⇩∘ vid_on (𝒟⇩∘ r)"
then obtain a where x_def: "x = ⟨a, a⟩" and a: "a ∈⇩∘ 𝒟⇩∘ r" by clarsimp
then obtain b where "⟨a, b⟩ ∈⇩∘ r" by auto
then show "x ∈⇩∘ r¯⇩∘ ∘⇩∘ r" unfolding x_def using a by auto
qed
lemma v11_vcomp_vconverse': "r ∘⇩∘ r¯⇩∘ = vid_on (ℛ⇩∘ r)"
using v11.v11_vcomp_vconverse v11_vconverse by force
lemma v11_vconverse_app[simp]:
assumes "r⦇a⦈ = b" and "a ∈⇩∘ 𝒟⇩∘ r"
shows "r¯⇩∘⦇b⦈ = a"
using assms by (simp add: vsv.vconverse_iff vsv_axioms vsv_vconverse)
lemma v11_vconverse_app_in_vdomain:
assumes "y ∈⇩∘ ℛ⇩∘ r"
shows "r¯⇩∘⦇y⦈ ∈⇩∘ 𝒟⇩∘ r"
using assms v11_vconverse
unfolding vrange_vconverse[symmetric]
by (auto simp: v11_def)
lemma v11_app_if_vconverse_app:
assumes "y ∈⇩∘ ℛ⇩∘ r" and "r¯⇩∘⦇y⦈ = x"
shows "r⦇x⦈ = y"
using assms vsv_vconverse by auto
lemma v11_app_vconverse_app:
assumes "a ∈⇩∘ ℛ⇩∘ r"
shows "r⦇r¯⇩∘⦇a⦈⦈ = a"
using assms by (meson v11_app_if_vconverse_app)
lemma v11_vconverse_app_app:
assumes "a ∈⇩∘ 𝒟⇩∘ r"
shows "r¯⇩∘⦇r⦇a⦈⦈ = a"
using assms v11_vconverse_app by auto
end
lemma v11_vlrestriction_vsubset:
assumes "v11 (f ↾⇧l⇩∘ A)" and "B ⊆⇩∘ A"
shows "v11 (f ↾⇧l⇩∘ B)"
proof-
from assms have fB_def: "f ↾⇧l⇩∘ B = (f ↾⇧l⇩∘ A) ↾⇧l⇩∘ B" by auto
show ?thesis unfolding fB_def by (intro v11.v11_vlrestriction assms(1))
qed
lemma v11_vlrestriction_vrange:
assumes "v11 s" and "v11 (r ↾⇧l⇩∘ ℛ⇩∘ s)"
shows "v11 (r ∘⇩∘ s)"
proof(intro v11I)
interpret v11 s by (rule assms(1))
from assms vsv_vlrestriction_vrange show "vsv (r ∘⇩∘ s)"
by (simp add: v11.axioms(1))
show "vsv ((r ∘⇩∘ s)¯⇩∘)"
unfolding vconverse_vcomp
proof(rule vsvI)
fix a c c' assume "⟨a, c⟩ ∈⇩∘ s¯⇩∘ ∘⇩∘ r¯⇩∘" "⟨a, c'⟩ ∈⇩∘ s¯⇩∘ ∘⇩∘ r¯⇩∘"
then obtain b and b'
where "⟨b, a⟩ ∈⇩∘ r"
and bc: "⟨c, b⟩ ∈⇩∘ s"
and "⟨b', a⟩ ∈⇩∘ r"
and b'c': "⟨c', b'⟩ ∈⇩∘ s"
by auto
moreover then have "b ∈⇩∘ ℛ⇩∘ s" and "b' ∈⇩∘ ℛ⇩∘ s" by auto
ultimately have "⟨b, a⟩ ∈⇩∘ (r ↾⇧l⇩∘ ℛ⇩∘ s)" and "⟨b', a⟩ ∈⇩∘ (r ↾⇧l⇩∘ ℛ⇩∘ s)" by auto
with assms(2) have bb': "b = b'" by auto
from assms bc[unfolded bb'] b'c' show "c = c'" by auto
qed auto
qed
lemma v11_vlrestriction_vcomp:
assumes "v11 (f ↾⇧l⇩∘ A)" and "v11 (g ↾⇧l⇩∘ (f `⇩∘ A))"
shows "v11 ((g ∘⇩∘ f) ↾⇧l⇩∘ A)"
using assms v11_vlrestriction_vrange by (auto simp: assms(2) app_vimage_def)
text‹Alternative forms of existing results.›
lemmas [intro, simp] = v11.v11_vinsert
and [intro, simp] = v11.v11_vintersection
and [intro, simp] = v11.v11_vdiff
and [intro, simp] = v11.v11_vrrestriction
and [intro, simp] = v11.v11_vlrestriction
and [intro, simp] = v11.v11_vrestriction
and [intro] = v11.v11_vimage_vpsubset_neq
subsection‹Tools: ‹mk_VLambda››
ML‹
fun pure_unfold ctxt thms = ctxt
|>
(
thms
|> Conv.rewrs_conv
|> Conv.try_conv
|> K
|> Conv.top_conv
)
|> Conv.fconv_rule;
val msg_args = "mk_VLambda: invalid arguments"
val vsv_VLambda_thm = @{thm vsv_VLambda};
val vsv_VLambda_match = vsv_VLambda_thm
|> Thm.full_prop_of
|> HOLogic.dest_Trueprop
|> dest_comb
|> #2;
val vdomain_VLambda_thm = @{thm vdomain_VLambda};
val vdomain_VLambda_match = vdomain_VLambda_thm
|> Thm.full_prop_of
|> HOLogic.dest_Trueprop
|> HOLogic.dest_eq
|> #1
|> dest_comb
|> #2;
val app_VLambda_thm = @{thm ZFC_Cardinals.beta};
val app_VLambda_match = app_VLambda_thm
|> Thm.concl_of
|> HOLogic.dest_Trueprop
|> HOLogic.dest_eq
|> #1
|> strip_comb
|> #2
|> hd;
fun mk_VLabmda_thm match_t match_thm ctxt thm =
let
val thm_ct = Thm.cprop_of thm
val (_, rhs_ct) = Thm.dest_equals thm_ct
handle TERM ("dest_equals", _) => error msg_args
val insts = Thm.match (Thm.cterm_of ctxt match_t, rhs_ct)
handle Pattern.MATCH => error msg_args
in
match_thm
|> Drule.instantiate_normalize insts
|> pure_unfold ctxt (thm |> Thm.symmetric |> single)
end;
val mk_VLambda_vsv =
mk_VLabmda_thm vsv_VLambda_match vsv_VLambda_thm;
val mk_VLambda_vdomain =
mk_VLabmda_thm vdomain_VLambda_match vdomain_VLambda_thm;
val mk_VLambda_app =
mk_VLabmda_thm app_VLambda_match app_VLambda_thm;
val mk_VLambda_parser = Parse.thm --
(
Scan.repeat
(
(\<^keyword>‹|vsv› -- Parse_Spec.opt_thm_name "|") ||
(\<^keyword>‹|app› -- Parse_Spec.opt_thm_name "|") ||
(\<^keyword>‹|vdomain› -- Parse_Spec.opt_thm_name "|")
)
);
fun process_mk_VLambda_thm mk_VLambda_thm (b, thm) ctxt =
let
val thm' = mk_VLambda_thm ctxt thm
val (res, ctxt') = ctxt
|> Local_Theory.note (b ||> map (Attrib.check_src ctxt), single thm')
val _ = Proof_Display.print_theorem (Position.thread_data ()) ctxt' res
in ctxt' end;
fun folder_mk_VLambda (("|vsv", b), thm) ctxt =
process_mk_VLambda_thm mk_VLambda_vsv (b, thm) ctxt
| folder_mk_VLambda (("|app", b), thm) ctxt =
process_mk_VLambda_thm mk_VLambda_app (b, thm) ctxt
| folder_mk_VLambda (("|vdomain", b), thm) ctxt =
process_mk_VLambda_thm mk_VLambda_vdomain (b, thm) ctxt
| folder_mk_VLambda _ _ = error msg_args
fun process_mk_VLambda (thm, ins) ctxt =
let
val _ = ins |> map fst |> has_duplicates op= |> not orelse error msg_args
val thm' = thm
|> singleton (Attrib.eval_thms ctxt)
|> Local_Defs.meta_rewrite_rule ctxt;
in fold folder_mk_VLambda (map (fn x => (x, thm')) ins) ctxt end;
val _ =
Outer_Syntax.local_theory
\<^command_keyword>‹mk_VLambda›
"VLambda"
(mk_VLambda_parser >> process_mk_VLambda);
›
text‹\newpage›
end