Theory Additive_Energy_Lower_Bounds
section‹Results on lower bounds on additive energy›
theory Additive_Energy_Lower_Bounds
imports
Additive_Combinatorics_Preliminaries
Miscellaneous_Lemmas
begin
context additive_abelian_group
begin
text‹The following corresponds to Proposition 2.11 in Gowers's notes \cite{Gowersnotes}.›
proposition additive_energy_lower_bound_sumset: fixes C::real
assumes "finite A" and "A ⊆ G" and "(card (sumset A A)) ≤ C * card A" and "card A ≠ 0"
shows "additive_energy A ≥ 1/C"
proof-
have "(card A)^2 = (∑ x ∈ sumset A A. real (f_sum x A))"
using assms f_sum_card by (metis of_nat_sum)
also have "... ≤ (card((sumset A A)) powr(1/2)) * (∑ x ∈ sumset A A . (f_sum x A)^2) powr(1/2)"
using Cauchy_Schwarz_ineq_sum2[of "λ d. 1" "λ d. f_sum d A"] by auto
also have "...≤ ((C * (card A)) powr(1/2)) * ((∑ x ∈ sumset A A . (f_sum x A)^2)) powr(1/2) "
by (metis mult.commute mult_left_mono assms(3) of_nat_0_le_iff powr_ge_zero powr_mono2
zero_le_divide_1_iff zero_le_numeral)
finally have "((card A)^2)^2 ≤ (((C * (card A)) powr(1/2)) * ((∑ x ∈ sumset A A . (f_sum x A)^2)) powr(1/2))^2"
by (metis of_nat_0_le_iff of_nat_power_eq_of_nat_cancel_iff power_mono)
then have "(card A)^4 ≤ (((C * (card A)) * ((∑ x ∈ sumset A A. (f_sum x A)^2))) powr (1/2))^2"
by (smt (verit) assms of_nat_0_le_iff powr_mult
mult.left_commute power2_eq_square power3_eq_cube power4_eq_xxxx power_commutes)
then have "(card A)^4 ≤ (( C * (card A)) * ((∑ x ∈ sumset A A. (f_sum x A)^2)))"
using assms powr_half_sqrt of_nat_0 of_nat_le_0_iff power_mult_distrib
real_sqrt_pow2 by (smt (verit, best) powr_mult)
moreover have "additive_energy A = (∑ x ∈ sumset A A. (f_sum x A)^2)/ (card A)^3"
using additive_energy_def f_sum_card_quadruple_set assms by simp
moreover then have "additive_energy A * (card A)^3 = (∑ x ∈ sumset A A. (f_sum x A)^2)"
using assms by simp
ultimately have "(additive_energy A) ≥ ((card A)^4)/ ( C * (card A)^4 )"
using additive_energy_upper_bound
additive_abelian_group_axioms assms divide_le_eq divide_le_eq_1_pos mult.left_commute
mult_left_mono of_nat_0_eq_iff of_nat_0_le_iff power_eq_0_iff power3_eq_cube power4_eq_xxxx
linorder_not_less mult.assoc mult_zero_left of_nat_0_less_iff of_nat_mult
order_trans_rules(23) times_divide_eq_right by (smt (verit) card_sumset_0_iff
div_by_1 mult_cancel_left1 nonzero_mult_div_cancel_left nonzero_mult_divide_mult_cancel_right
nonzero_mult_divide_mult_cancel_right2 of_nat_1 of_nat_le_0_iff times_divide_eq_left)
then show ?thesis by (simp add: assms)
qed
text‹An analogous version of Proposition 2.11 where the assumption is on a difference set is given
below. The proof is identical to the proof of @{term additive_energy_lower_bound_sumset}
above (with the obvious modifications). ›
proposition additive_energy_lower_bound_differenceset: fixes C::real
assumes "finite A" and "A ⊆ G" and "(card (differenceset A A)) ≤ C * card A" and "card A ≠ 0"
shows "additive_energy A ≥ 1/C"
proof-
have "(card A)^2 = (∑ x ∈ differenceset A A. real (f_diff x A))"
using assms f_diff_card by (metis of_nat_sum)
also have "... ≤ (card((differenceset A A)) powr (1/2)) * (∑ x ∈ differenceset A A . (f_diff x A)^2) powr(1/2)"
using Cauchy_Schwarz_ineq_sum2[of "λ d. 1" "λ d. f_diff d A"] by auto
also have "...≤ ((C * (card A))powr (1/2)) * ((∑ x ∈ differenceset A A . (f_diff x A)^2)) powr(1/2)"
by (metis mult.commute mult_left_mono assms(3) of_nat_0_le_iff powr_ge_zero powr_mono2
zero_le_divide_1_iff zero_le_numeral)
finally have "((card A)^2)^2 ≤ (((C * (card A))powr (1/2)) * ((∑ x ∈ differenceset A A . (f_diff x A)^2)) powr(1/2))^2"
by (metis of_nat_0_le_iff of_nat_power_eq_of_nat_cancel_iff power_mono)
then have "(card A)^4 ≤ (((C * (card A)) * ((∑ x ∈ differenceset A A. (f_diff x A)^2))) powr (1/2))^2"
by (smt (verit) assms of_nat_0_le_iff powr_mult
mult.left_commute power2_eq_square power3_eq_cube power4_eq_xxxx power_commutes)
then have "(card A)^4 ≤ ((C * (card A)) * ((∑ x ∈ differenceset A A . (f_diff x A)^2)))"
using assms powr_half_sqrt of_nat_0 of_nat_le_0_iff power_mult_distrib
real_sqrt_pow2 by (smt (verit, best) powr_mult)
moreover have "additive_energy A = (∑ x ∈ differenceset A A. (f_diff x A)^2)/ (card A)^3"
using additive_energy_def f_diff_card_quadruple_set assms by simp
moreover then have "additive_energy A * (card A)^3 = (∑ x ∈ differenceset A A. (f_diff x A)^2)"
using assms by simp
ultimately have "(additive_energy A) ≥ ((card A)^4)/ (C * (card A)^4 )"
using additive_energy_upper_bound
additive_abelian_group_axioms assms divide_le_eq divide_le_eq_1_pos mult.left_commute
mult_left_mono of_nat_0_eq_iff of_nat_0_le_iff power_eq_0_iff power3_eq_cube power4_eq_xxxx
linorder_not_less mult.assoc mult_zero_left of_nat_0_less_iff of_nat_mult
order_trans_rules(23) times_divide_eq_right by (smt (verit) card_sumset_0_iff
div_by_1 mult_cancel_left1 nonzero_mult_div_cancel_left nonzero_mult_divide_mult_cancel_right
nonzero_mult_divide_mult_cancel_right2 of_nat_1 of_nat_le_0_iff times_divide_eq_left)
then show ?thesis by (simp add: assms)
qed
end
end