Abstract
We extend the ZF-Constructibility library by relativizing theories of
the Isabelle/ZF and Delta System Lemma sessions to a transitive class.
We also relativize Paulson's work on Aleph and our former
treatment of the Axiom of Dependent Choices. This work is a
prerrequisite to our formalization of the independence of the
Continuum Hypothesis.
License
Topics
Session Transitive_Models
- Utils
- Nat_Miscellanea
- ZF_Miscellanea
- Renaming
- Renaming_Auto
- M_Basic_No_Repl
- Eclose_Absolute
- Recursion_Thms
- Datatype_absolute
- Internalize
- Rec_Separation
- Satisfies_absolute
- DPow_absolute
- Synthetic_Definition
- Internalizations
- Least
- Higher_Order_Constructs
- Relativization
- Discipline_Base
- Arities
- Discipline_Function
- Lambda_Replacement
- Discipline_Cardinal
- Univ_Relative
- Cardinal_Relative
- CardinalArith_Relative
- Aleph_Relative
- Cardinal_AC_Relative
- FiniteFun_Relative
- ZF_Library_Relative
- Replacement_Lepoll
- Cardinal_Library_Relative
- Delta_System_Relative
- Pointed_DC_Relative
- Partial_Functions_Relative