Abstract
We redeveloped our formalization of forcing in the set theory
framework of Isabelle/ZF. Under the assumption of the existence of a
countable transitive model of ZFC, we construct proper generic
extensions that satisfy the Continuum Hypothesis and its negation.
License
Topics
Session Independence_CH
- Forcing_Notions
- Cohen_Posets_Relative
- Edrel
- FrecR
- FrecR_Arities
- Fm_Definitions
- Internal_ZFC_Axioms
- Interface
- Separation_Instances
- Replacement_Instances
- ZF_Trans_Interpretations
- Forcing_Data
- Forces_Definition
- Names
- Forcing_Theorems
- Ordinals_In_MG
- Separation_Rename
- Separation_Axiom
- Pairing_Axiom
- Union_Axiom
- Powerset_Axiom
- Extensionality_Axiom
- Foundation_Axiom
- Replacement_Axiom
- Infinity_Axiom
- Choice_Axiom
- Proper_Extension
- Succession_Poset
- Forcing_Main
- Cardinal_Preservation
- Not_CH
- Kappa_Closed_Notions
- CH
- Absolute_Versions
- Definitions_Main
- Demonstrations