Abstract
This article provides a formalization of the foundations of the theory
of 1-categories in the object logic ZFC in HOL of the formal proof
assistant Isabelle. The article builds upon the foundations that were
established in the AFP entry Category Theory for ZFC in HOL
I: Foundations: Design Patterns, Set Theory, Digraphs,
Semicategories.
License
History
- November 7, 2021
- added a definition of a dagger monoidal category (revision c9ed46c09de9)
Topics
Session CZH_Elementary_Categories
- CZH_ECAT_Introduction
- CZH_ECAT_Category
- CZH_ECAT_Small_Category
- CZH_ECAT_Functor
- CZH_ECAT_Small_Functor
- CZH_ECAT_NTCF
- CZH_ECAT_Small_NTCF
- CZH_ECAT_PCategory
- CZH_ECAT_Subcategory
- CZH_ECAT_Simple
- CZH_ECAT_Discrete
- CZH_ECAT_SS
- CZH_ECAT_Parallel
- CZH_ECAT_Comma
- CZH_ECAT_Rel
- CZH_ECAT_Par
- CZH_ECAT_Set
- CZH_ECAT_GRPH
- CZH_ECAT_SemiCAT
- CZH_DG_CAT
- CZH_SMC_CAT
- CZH_ECAT_CAT
- CZH_DG_FUNCT
- CZH_SMC_FUNCT
- CZH_ECAT_FUNCT
- CZH_ECAT_Hom
- CZH_ECAT_Cone
- CZH_ECAT_Small_Cone
- CZH_ECAT_Yoneda
- CZH_ECAT_Order
- CZH_ECAT_Small_Order
- CZH_ECAT_Ordinal
- CZH_ECAT_CSimplicial
- CZH_ECAT_Structure_Example
- CZH_ECAT_Conclusions