Theory R_R

(*  Title:      HOL/SPARK/Examples/RIPEMD-160/R_R.thy
    Author:     Fabian Immler, TU Muenchen

Verification of the RIPEMD-160 hash function
*)

theory R_R
imports RMD_Specification RMD_Lemmas
begin

spark_open ‹rmd/r_r›

spark_vc function_r_r_2
proof -
  from 0  j j  79
  show C: ?C1
    by (simp add: r'_def r'_list_def nth_map [symmetric, of _ _ int] del: fun_upd_apply)
      (simp add: nth_fun_of_list_eq [of _ _ undefined] del: fun_upd_apply)
  from C show ?C2 by simp
  have "list_all (λn. int n  15) r'_list"
    by (simp add: r'_list_def)
  moreover have "length r'_list = 80"
    by (simp add: r'_list_def)
  ultimately show ?C3 unfolding C using j  79
    by (simp add: r'_def list_all_length)
qed

spark_end

end