Theory RMD_Lemmas
theory RMD_Lemmas
imports Main
begin
definition "fun_of_list i xs g j =
(if j < i ∨ i + int (length xs) ≤ j then g j else xs ! nat (j - i))"
lemma fun_of_list_Nil [simp]: "fun_of_list i [] g = g"
by (auto simp add: fun_eq_iff fun_of_list_def)
lemma fun_of_list_Cons [simp]:
"fun_of_list i (x # xs) g = fun_of_list (i + 1) xs (g(i:=x))"
by (auto simp add: fun_eq_iff fun_of_list_def nth_Cons'
nat_diff_distrib [of "int (Suc 0)", simplified, symmetric]
diff_diff_eq)
lemma nth_fun_of_list_eq:
"0 ≤ i ⟹ i < int (length xs) ⟹ xs ! nat i = fun_of_list 0 xs g i"
by (simp add: fun_of_list_def)
end