File ‹multiseries_expansion.ML›
signature MULTISERIES_EXPANSION = sig
type expansion_thm = thm
type trimmed_thm = thm
type expr = Exp_Log_Expression.expr
type basis = Asymptotic_Basis.basis
datatype trim_mode = Simple_Trim | Pos_Trim | Neg_Trim | Sgn_Trim
datatype zeroness = IsZero | IsNonZero | IsPos | IsNeg
datatype intyness = Nat of thm | Neg_Nat of thm | No_Nat
datatype parity = Even of thm | Odd of thm | Unknown_Parity
datatype limit =
   Zero_Limit of bool option
 | Finite_Limit of term
 | Infinite_Limit of bool option
datatype trim_result =
    Trimmed of zeroness * trimmed_thm option
  | Aborted of order
val get_intyness : Proof.context -> cterm -> intyness
val get_parity : cterm -> parity
val get_expansion : thm -> term
val get_coeff : term -> term
val get_exponent : term -> term
val get_expanded_fun : thm -> term
val get_eval : term -> term
val expands_to_hd : thm -> thm
val mk_eval_ctxt : Proof.context -> Lazy_Eval.eval_ctxt
val expand : Lazy_Eval.eval_ctxt -> expr -> basis -> expansion_thm * basis
val expand_term : Lazy_Eval.eval_ctxt -> term -> basis -> expansion_thm * basis
val expand_terms : Lazy_Eval.eval_ctxt -> term list -> basis -> expansion_thm list * basis
val limit_of_expansion : bool * bool -> Lazy_Eval.eval_ctxt -> thm * basis -> limit * thm
val compute_limit : Lazy_Eval.eval_ctxt -> term -> limit * thm
val compare_expansions : 
  Lazy_Eval.eval_ctxt -> expansion_thm * expansion_thm * basis -> 
    order * thm * expansion_thm * expansion_thm
datatype comparison_result =
  Cmp_Dominated of order * thm list * zeroness * trimmed_thm * expansion_thm * expansion_thm 
| Cmp_Asymp_Equiv of thm * thm
val compare_expansions' :
  Lazy_Eval.eval_ctxt ->
      thm * thm * Asymptotic_Basis.basis ->
        comparison_result
val prove_at_infinity : Lazy_Eval.eval_ctxt -> thm * basis -> thm
val prove_at_top : Lazy_Eval.eval_ctxt -> thm * basis -> thm
val prove_at_bot : Lazy_Eval.eval_ctxt -> thm * basis -> thm
val prove_nhds : Lazy_Eval.eval_ctxt -> thm * basis -> thm
val prove_at_0 : Lazy_Eval.eval_ctxt -> thm * basis -> thm
val prove_at_left_0 : Lazy_Eval.eval_ctxt -> thm * basis -> thm
val prove_at_right_0 : Lazy_Eval.eval_ctxt -> thm * basis -> thm
val prove_smallo : Lazy_Eval.eval_ctxt -> thm * thm * basis -> thm
val prove_bigo : Lazy_Eval.eval_ctxt -> thm * thm * basis -> thm
val prove_bigtheta : Lazy_Eval.eval_ctxt -> thm * thm * basis -> thm
val prove_asymp_equiv : Lazy_Eval.eval_ctxt -> thm * thm * basis -> thm
val prove_asymptotic_relation : Lazy_Eval.eval_ctxt -> thm * thm * basis -> order * thm
val prove_eventually_less : Lazy_Eval.eval_ctxt -> thm * thm * basis -> thm
val prove_eventually_greater : Lazy_Eval.eval_ctxt -> thm * thm * basis -> thm
val prove_eventually_nonzero : Lazy_Eval.eval_ctxt -> thm * basis -> thm
val extract_terms : int * bool -> Lazy_Eval.eval_ctxt -> basis -> term -> term * term option
val check_expansion : Exp_Log_Expression.expr -> expansion_thm -> expansion_thm
val zero_expansion : basis -> expansion_thm
val const_expansion : Lazy_Eval.eval_ctxt -> basis -> term -> expansion_thm
val ln_expansion :
  Lazy_Eval.eval_ctxt -> trimmed_thm -> expansion_thm -> basis -> expansion_thm * basis
val exp_expansion : Lazy_Eval.eval_ctxt -> expansion_thm -> basis -> expansion_thm * basis
val powr_expansion :
  Lazy_Eval.eval_ctxt -> expansion_thm * expansion_thm * basis -> expansion_thm * basis
val powr_const_expansion :
  Lazy_Eval.eval_ctxt -> expansion_thm * term * basis -> expansion_thm
val powr_nat_expansion :
  Lazy_Eval.eval_ctxt -> expansion_thm * expansion_thm * basis -> expansion_thm * basis
val power_expansion : Lazy_Eval.eval_ctxt -> expansion_thm * term * basis -> expansion_thm
val root_expansion : Lazy_Eval.eval_ctxt -> expansion_thm * term * basis -> expansion_thm
val sgn_expansion : Lazy_Eval.eval_ctxt -> expansion_thm * basis -> expansion_thm
val min_expansion : Lazy_Eval.eval_ctxt -> expansion_thm * expansion_thm * basis -> expansion_thm
val max_expansion : Lazy_Eval.eval_ctxt -> expansion_thm * expansion_thm * basis -> expansion_thm
val arctan_expansion : Lazy_Eval.eval_ctxt -> basis -> expansion_thm -> expansion_thm
val ev_zeroness_oracle : Lazy_Eval.eval_ctxt -> term -> thm option
val zeroness_oracle : bool -> trim_mode option -> Lazy_Eval.eval_ctxt -> term -> zeroness * thm option
val whnf_expansion : Lazy_Eval.eval_ctxt -> expansion_thm -> term option * expansion_thm * thm
val simplify_expansion : Lazy_Eval.eval_ctxt -> expansion_thm -> expansion_thm 
val simplify_term : Lazy_Eval.eval_ctxt -> term -> term
val trim_expansion_while_greater :
  bool -> term list option -> bool -> trim_mode option -> Lazy_Eval.eval_ctxt ->
    thm * Asymptotic_Basis.basis -> thm * trim_result * (zeroness * thm) list
val trim_expansion : bool -> trim_mode option -> Lazy_Eval.eval_ctxt -> expansion_thm * basis -> 
  expansion_thm * zeroness * trimmed_thm option
val try_drop_leading_term_ex : bool -> Lazy_Eval.eval_ctxt -> expansion_thm -> expansion_thm option
val try_prove_real_eq : bool -> Lazy_Eval.eval_ctxt -> term * term -> thm option
val try_prove_ev_eq : Lazy_Eval.eval_ctxt -> term * term -> thm option
val prove_compare_expansions : order -> thm list -> thm
val simplify_trimmed_expansion : Lazy_Eval.eval_ctxt -> expansion_thm * trimmed_thm -> 
  expansion_thm * trimmed_thm
val retrim_expansion : Lazy_Eval.eval_ctxt -> expansion_thm * basis -> expansion_thm * thm
val retrim_pos_expansion : Lazy_Eval.eval_ctxt -> expansion_thm * basis * trimmed_thm ->
  expansion_thm * thm * trimmed_thm
val register_sign_oracle : 
  binding * (Proof.context -> int -> tactic) -> Context.generic -> Context.generic
val get_sign_oracles :
  Context.generic -> (string * (Proof.context -> int -> tactic)) list
val solve_eval_eq : thm -> thm
end
structure Multiseries_Expansion : MULTISERIES_EXPANSION = struct
open Asymptotic_Basis
open Exp_Log_Expression
open Lazy_Eval
structure Data = Generic_Data
(
  type T = (Proof.context -> int -> tactic) Name_Space.table;
  val empty : T = Name_Space.empty_table "sign_oracle_tactic";
  fun merge (tactics1, tactics2) : T = Name_Space.merge_tables (tactics1, tactics2);
);
fun register_sign_oracle (s, tac) ctxt =
  Data.map (Name_Space.define ctxt false (s, tac) #> snd) ctxt
fun get_sign_oracles ctxt = Name_Space.fold_table cons (Data.get ctxt) []
fun apply_sign_oracles ctxt tac =
  let
    val oracles = get_sign_oracles (Context.Proof ctxt)
    fun tac' {context = ctxt, concl, ...} =
      if Thm.term_of concl = \<^term>‹HOL.Trueprop HOL.False› then
        no_tac
      else
        FIRST (map (fn tac => HEADGOAL (snd tac ctxt)) oracles)
  in
    tac THEN_ALL_NEW (Subgoal.FOCUS_PREMS tac' ctxt)
  end
    
type expansion_thm = thm
type trimmed_thm = thm
val dest_fun = dest_comb #> fst
val dest_arg = dest_comb #> snd
val concl_of' = Thm.concl_of #> HOLogic.dest_Trueprop
fun get_expansion thm =
  thm |> Thm.concl_of |> HOLogic.dest_Trueprop |> Term.dest_comb |> fst |> Term.dest_comb |> snd
fun get_expanded_fun thm = thm |> concl_of' |> dest_fun |> dest_fun |> dest_arg
datatype intyness = Nat of thm | Neg_Nat of thm | No_Nat
fun get_intyness ctxt ct =
  if Thm.typ_of_cterm ct = \<^typ>‹Real.real› then
    let
      val ctxt' = put_simpset HOL_basic_ss ctxt addsimps @{thms intyness_simps}
      val conv = 
        Simplifier.rewrite ctxt then_conv Simplifier.rewrite ctxt'
      fun flip (Nat thm) = Neg_Nat (thm RS @{thm intyness_uminus})
        | flip _ = No_Nat
      fun get_intyness' ct =
        case Thm.term_of ct of
          \<^term>‹0::real› => Nat @{thm intyness_0}
        | \<^term>‹1::real› => Nat @{thm intyness_1}
        | Const (\<^const_name>‹numeral›, _) $ _ => 
            Nat (Thm.reflexive (Thm.dest_arg ct) RS @{thm intyness_numeral})
        | Const (\<^const_name>‹uminus›, _) $ _ => flip (get_intyness' (Thm.dest_arg ct))
        | Const (\<^const_name>‹of_nat›, _) $ _ => 
            Nat (Thm.reflexive (Thm.dest_arg ct) RS @{thm intyness_of_nat})
        | _ => No_Nat
      val thm = conv ct
      val ct' = thm |> Thm.cprop_of |> Thm.dest_equals_rhs
    in
      case get_intyness' ct' of
        Nat thm' => Nat (Thm.transitive thm thm' RS @{thm HOL.meta_eq_to_obj_eq})
      | Neg_Nat thm' => Neg_Nat (Thm.transitive thm thm' RS @{thm HOL.meta_eq_to_obj_eq})
      | No_Nat => No_Nat
    end
      handle CTERM _ => No_Nat
  else
    No_Nat
datatype parity = Even of thm | Odd of thm | Unknown_Parity
fun get_parity ct =
  let
    fun inst thm cts =
      let
        val tvs = Term.add_tvars (Thm.concl_of thm) []
      in
        case tvs of
          [v] =>
            let
              val thm' = Thm.instantiate (TVars.make1 (v, Thm.ctyp_of_cterm ct), Vars.empty) thm
              val vs = take (length cts) (rev (Term.add_vars (Thm.concl_of thm') []))
            in
              Thm.instantiate (TVars.empty, Vars.make (vs ~~ cts)) thm'
            end
        | _ => raise THM ("get_parity", 0, [thm])
      end
    val get_num = Thm.dest_arg o Thm.dest_arg
  in
    case Thm.term_of ct of
      Const (\<^const_name>‹Groups.zero›, _) => Even (inst @{thm even_zero} [])
    | Const (\<^const_name>‹Groups.one›, _) => Odd (inst @{thm odd_one} [])
    | Const (\<^const_name>‹Num.numeral_class.numeral›, _) $ \<^term>‹Num.One› =>
        Odd (inst @{thm odd_Numeral1} [])
    | Const (\<^const_name>‹Num.numeral_class.numeral›, _) $ (\<^term>‹Num.Bit0› $ _) =>
        Even (inst @{thm even_numeral} [get_num ct])
    | Const (\<^const_name>‹Num.numeral_class.numeral›, _) $ (\<^term>‹Num.Bit1› $ _) =>
        Odd (inst @{thm odd_numeral} [get_num ct])
    | Const (\<^const_name>‹Groups.uminus›, _) $ _ => (
        case get_parity (Thm.dest_arg ct) of
          Even thm => Even (@{thm even_uminusI} OF [thm])
        | Odd thm => Odd (@{thm odd_uminusI} OF [thm])
        | _ => Unknown_Parity)
    | Const (\<^const_name>‹Groups.plus›, _) $ _ $ _ => (
        case apply2 get_parity (Thm.dest_binop ct) of
          (Even thm1, Even thm2) => Even (@{thm even_addI(1)} OF [thm1, thm2])
        | (Odd thm1, Odd thm2) => Even (@{thm even_addI(2)} OF [thm1, thm2])
        | (Even thm1, Odd thm2) => Odd (@{thm odd_addI(1)} OF [thm1, thm2])
        | (Odd thm1, Even thm2) => Odd (@{thm odd_addI(2)} OF [thm1, thm2])
        | _ => Unknown_Parity)
    | Const (\<^const_name>‹Groups.minus›, _) $ _ $ _ => (
        case apply2 get_parity (Thm.dest_binop ct) of
          (Even thm1, Even thm2) => Even (@{thm even_diffI(1)} OF [thm1, thm2])
        | (Odd thm1, Odd thm2) => Even (@{thm even_diffI(2)} OF [thm1, thm2])
        | (Even thm1, Odd thm2) => Odd (@{thm odd_diffI(1)} OF [thm1, thm2])
        | (Odd thm1, Even thm2) => Odd (@{thm odd_diffI(2)} OF [thm1, thm2])
        | _ => Unknown_Parity)
    | Const (\<^const_name>‹Groups.times›, _) $ _ $ _ => (
        case apply2 get_parity (Thm.dest_binop ct) of
          (Even thm1, _) => Even (@{thm even_multI(1)} OF [thm1])
        | (_, Even thm2) => Even (@{thm even_multI(2)} OF [thm2])
        | (Odd thm1, Odd thm2) => Odd (@{thm odd_multI} OF [thm1, thm2])
        | _ => Unknown_Parity)
    | Const (\<^const_name>‹Power.power›, _) $ _ $ _ =>
        let
          val (a, n) = Thm.dest_binop ct
        in
          case get_parity a of
            Odd thm => Odd (inst @{thm odd_powerI} [a, n] OF [thm])
          | _ => Unknown_Parity
        end
    | _ => Unknown_Parity
  end
fun simplify_term' facts ctxt =
  let
    val ctxt = Simplifier.add_prems facts ctxt
  in
    Thm.cterm_of ctxt #> Simplifier.rewrite ctxt #> 
    Thm.concl_of #> Logic.dest_equals #> snd
  end
fun simplify_term ectxt = simplify_term' (get_facts ectxt) (get_ctxt ectxt)
fun simplify_eval ctxt =
  simplify_term' [] (put_simpset HOL_basic_ss ctxt addsimps @{thms eval_simps})
datatype zeroness = IsZero | IsNonZero | IsPos | IsNeg
fun try_get_coeff expr =
  case expr of
    Const (\<^const_name>‹MS›, _) $ (
      Const (\<^const_name>‹MSLCons›, _) $ (
        Const (\<^const_name>‹Pair›, _) $ c $ _) $ _) $ _ =>
      SOME c
  | _ => NONE
fun get_coeff expr = 
  expr |> dest_comb |> fst |> dest_comb |> snd |> dest_comb |> fst |> dest_comb |> snd
    |> dest_comb |> fst |> dest_comb |> snd
fun get_lead_coeff expr =
  case try_get_coeff expr of
    NONE => expr
  | SOME c => get_lead_coeff c
fun get_exponent expr = 
  expr |> dest_comb |> fst |> dest_comb |> snd |> dest_comb |> fst |> dest_comb |> snd
    |> dest_comb |> snd
fun get_exponents exp =
  if fastype_of exp = \<^typ>‹real› then
    []
  else
    get_exponent exp :: get_exponents (get_coeff exp)
fun get_eval expr =
  if fastype_of expr = \<^typ>‹real› then
    Abs ("x", \<^typ>‹real›, expr)
  else
    expr |> dest_comb |> snd
val eval_simps = @{thms eval_simps [THEN eq_reflection]}
fun ev_zeroness_oracle ectxt t = 
  let
    val ctxt = Lazy_Eval.get_ctxt ectxt
    val goal = 
      betapply (\<^term>‹λf::real ⇒ real. eventually (λx. f x = 0) at_top›, t)
      |> HOLogic.mk_Trueprop
    fun tac {context = ctxt, ...} =
      HEADGOAL (Method.insert_tac ctxt (get_facts ectxt))
      THEN Local_Defs.unfold_tac ctxt eval_simps
      THEN HEADGOAL (Simplifier.asm_full_simp_tac ctxt)
  in
    try (Goal.prove ctxt [] [] goal) tac
  end
datatype trim_mode = Simple_Trim | Pos_Trim | Neg_Trim | Sgn_Trim
fun zeroness_oracle fail mode ectxt exp = 
  let
    val ctxt = Lazy_Eval.get_ctxt ectxt
    val eq = (exp, \<^term>‹0::real›) |> HOLogic.mk_eq
    val goal1 = (IsZero, eq |> HOLogic.mk_Trueprop)
    val goal2 = 
      case mode of
        SOME Pos_Trim => 
          (IsPos, \<^term>‹(<) (0::real)› $ exp |> HOLogic.mk_Trueprop)
      | SOME Sgn_Trim => 
          (IsPos, \<^term>‹(<) (0::real)› $ exp |> HOLogic.mk_Trueprop)
      | SOME Neg_Trim => 
          (IsNeg, betapply (\<^term>‹λx. x < (0::real)›, exp) |> HOLogic.mk_Trueprop)
      | _ =>
          (IsNonZero, eq |> HOLogic.mk_not |> HOLogic.mk_Trueprop)
    val goals =
      (if mode = SOME Sgn_Trim then 
         [(IsNeg, betapply (\<^term>‹λx. x < (0::real)›, exp) |> HOLogic.mk_Trueprop)] 
       else 
         [])
    val goals = goal2 :: goals
    fun tac {context = ctxt, ...} =
      HEADGOAL (Method.insert_tac ctxt (get_facts ectxt))
      THEN Local_Defs.unfold_tac ctxt eval_simps
      THEN HEADGOAL (apply_sign_oracles ctxt (Simplifier.asm_full_simp_tac ctxt))
    fun prove (res, goal) = try (fn goal => (res, SOME (Goal.prove ctxt [] [] goal tac))) goal
    fun err () =
      let
        val mode_msg =
          case mode of
            SOME Simple_Trim => "whether the following constant is zero"
          | SOME Pos_Trim => "whether the following constant is zero or positive"
          | SOME Neg_Trim => "whether the following constant is zero or negative"
          | SOME Sgn_Trim => "the sign of the following constant"
          | _ => raise Match
        val t = simplify_term' (get_facts ectxt) ctxt exp
        val _ =
          if #verbose (#ctxt ectxt) then
            let
              val p = Pretty.str ("real_asymp failed to determine " ^ mode_msg ^ ":")
              val p = Pretty.chunks [p, Pretty.indent 2 (Syntax.pretty_term ctxt t)]
            in
              Pretty.writeln p
            end else ()
      in
        raise TERM ("zeroness_oracle", [t])
      end
  in
    case prove goal1 of
      SOME res => res
    | NONE => 
        if mode = NONE then 
          (IsNonZero, NONE)
        else
          case get_first prove (goal2 :: goals) of
            NONE => if fail then err () else (IsNonZero, NONE)
          | SOME res => res
  end
fun try_prove_real_eq fail ectxt (lhs, rhs) =
  case zeroness_oracle false NONE ectxt (\<^term>‹(-) :: real => _› $ lhs $ rhs) of
    (IsZero, SOME thm) => SOME (thm RS @{thm real_eqI})
  | _ => 
    if not fail then NONE else
      let
        val ctxt = get_ctxt ectxt
        val ts = map (simplify_term' (get_facts ectxt) ctxt) [lhs, rhs]
        val _ =
          if #verbose (#ctxt ectxt) then
            let
              val p = 
                Pretty.str ("real_asymp failed to prove that the following two numbers are equal:")
              val p = Pretty.chunks (p :: map (Pretty.indent 2 o Syntax.pretty_term ctxt) ts)
            in
              Pretty.writeln p
            end else ()
      in
        raise TERM ("try_prove_real_eq", [lhs, rhs])
      end
fun try_prove_ev_eq ectxt (f, g) =
  let
    val t = Envir.beta_eta_contract (\<^term>‹λ(f::real=>real) g x. f x - g x› $ f $ g)
  in
    Option.map (fn thm => thm RS @{thm eventually_diff_zero_imp_eq}) (ev_zeroness_oracle ectxt t)
  end
fun real_less a b = \<^term>‹(<) :: real ⇒ real ⇒ bool› $ a $ b
fun real_eq a b = \<^term>‹(=) :: real ⇒ real ⇒ bool› $ a $ b
fun real_neq a b = \<^term>‹(≠) :: real ⇒ real ⇒ bool› $ a $ b
fun real_sgn_hook ({pctxt = ctxt, facts, verbose, ...}) t =
  let
    val get_rhs = Thm.concl_of #> Logic.dest_equals #> snd
    fun tac {context = ctxt, ...} = 
      HEADGOAL (Method.insert_tac ctxt (Net.content facts) 
        THEN' (apply_sign_oracles ctxt (Simplifier.asm_full_simp_tac ctxt)))
    fun prove_first err [] [] =
          if not verbose then raise TERM ("real_sgn_hook", [t])
            else let val _ = err () in raise TERM ("real_sgn_hook", [t]) end
      | prove_first err (goal :: goals) (thm :: thms) =
          (case try (Goal.prove ctxt [] [] goal) tac of
             SOME thm' => 
               let val thm'' = thm' RS thm in SOME (get_rhs thm'', Conv.rewr_conv thm'') end
           | NONE => prove_first err goals thms)
      | prove_first _ _ _ = raise Match
  in
    case t of
      \<^term>‹(=) :: real => _› $ a $ \<^term>‹0 :: real› =>
        let
          val goals =
            map (fn c => HOLogic.mk_Trueprop (c a \<^term>‹0 :: real›)) [real_neq, real_eq]
          fun err () = 
            let
              val facts' = Net.content facts
              val a' = simplify_term' facts' ctxt a
              val p = Pretty.str ("real_asymp failed to determine whether the following " ^
                                    "constant is zero: ")
              val p = Pretty.chunks [p, Pretty.indent 2 (Syntax.pretty_term ctxt a')]
            in
              Pretty.writeln p
            end
        in
          prove_first err goals @{thms Eq_FalseI Eq_TrueI}
        end
    | Const (\<^const_name>‹COMPARE›, _) $ a $ b =>
        let
          val goals = map HOLogic.mk_Trueprop [real_less a b, real_less b a, real_eq a b]
          fun err () = 
            let
              val facts' = Net.content facts
              val (a', b') = apply2 (simplify_term' facts' ctxt) (a, b)
              val p = Pretty.str ("real_asymp failed to compare" ^
                        "the following two constants: ")
              val p = Pretty.chunks (p :: map (Pretty.indent 2 o Syntax.pretty_term ctxt) [a', b'])
            in
              Pretty.writeln p
            end
        in
          prove_first err goals @{thms COMPARE_intros}
        end
    | _ => NONE
  end
fun get_constructors ctxt =
  let
    val thms = Named_Theorems.get ctxt \<^named_theorems>‹exp_log_eval_constructor›
    fun go _ [] acc = rev acc
      | go f (x :: xs) acc =
          case f x of
            NONE => go f xs acc
          | SOME y => go f xs (y :: acc)
    fun map_option f xs = go f xs []
    fun dest_constructor thm =
      case Thm.concl_of thm of
        Const (\<^const_name>‹HOL.Trueprop›, _) $
            (Const (\<^const_name>‹REAL_ASYMP_EVAL_CONSTRUCTOR›, _) $ Const (c, T)) =>
          SOME (c, length (fst (strip_type T)))
     | _ => NONE
  in
    thms |> map_option dest_constructor
  end
fun mk_eval_ctxt ctxt =
  let
    val eval_eqs = (Named_Theorems.get ctxt \<^named_theorems>‹real_asymp_eval_eqs›)
    val constructors = get_constructors ctxt
  in
    Lazy_Eval.mk_eval_ctxt ctxt constructors eval_eqs
    |> add_hook real_sgn_hook
  end
val exp_pat = 
  let
    val anypat = AnyPat ("_", 0)
  in
    ConsPat (\<^const_name>‹MS›, 
      [ConsPat (\<^const_name>‹MSLCons›, 
         [ConsPat (\<^const_name>‹Pair›, [anypat, anypat]), anypat]), anypat])
  end
fun whnf_expansion ectxt thm =
  let
    val ctxt = get_ctxt ectxt
    val exp = get_expansion thm
    val (_, _, conv) = match ectxt exp_pat exp (SOME [])
    val eq_thm = conv (Thm.cterm_of ctxt exp)
    val exp' = eq_thm |> Thm.concl_of |> Logic.dest_equals |> snd
  in
    case exp' of
      Const (\<^const_name>‹MS›, _) $ (Const (\<^const_name>‹MSLCons›, _) $ 
        (Const (\<^const_name>‹Pair›, _) $ c $ _) $ _) $ _ =>
          (SOME c, @{thm expands_to_meta_eq_cong} OF [thm, eq_thm], eq_thm)
    | Const (\<^const_name>‹MS›, _) $ Const (\<^const_name>‹MSLNil›, _) $ _ =>
        (NONE, @{thm expands_to_meta_eq_cong} OF [thm, eq_thm], eq_thm)
    | _ => raise TERM ("whnf_expansion", [exp'])
  end
fun try_lift_function ectxt (thm, SEmpty) _ = (NONE, thm)
  | try_lift_function ectxt (thm, basis) cont =
  case whnf_expansion ectxt thm of
    (SOME c, thm, _) =>
      let
        val f = get_expanded_fun thm
        val T = fastype_of c
        val t = Const (\<^const_name>‹eval›, T --> \<^typ>‹real ⇒ real›) $ c
        val t = Term.betapply (Term.betapply (\<^term>‹λ(f::real⇒real) g x. f x - g x›, f), t)
      in
        case ev_zeroness_oracle ectxt t of
          NONE => (NONE, thm)
        | SOME zero_thm =>
            let
              val thm' = cont ectxt (thm RS @{thm expands_to_hd''}, tl_basis basis)
              val thm'' = @{thm expands_to_lift_function} OF [zero_thm, thm']
            in
              (SOME (lift basis thm''), thm)
            end
      end
  | _ => (NONE, thm)
fun expands_to_hd thm = thm RS
  (if fastype_of (get_expansion thm) = \<^typ>‹real ms› then 
     @{thm expands_to_hd'}
   else 
     @{thm expands_to_hd})
fun simplify_expansion ectxt thm =
  let
    val exp = get_expansion thm
    val ctxt = get_ctxt ectxt
    val eq_thm = Simplifier.rewrite ctxt (Thm.cterm_of ctxt exp)
  in
    @{thm expands_to_meta_eq_cong} OF [thm, eq_thm]
  end
fun simplify_trimmed_expansion ectxt (thm, trimmed_thm) =
  let
    val exp = get_expansion thm
    val ctxt = get_ctxt ectxt
    val eq_thm = Simplifier.rewrite ctxt (Thm.cterm_of ctxt exp)
    val trimmed_cong_thm =
      case trimmed_thm |> concl_of' |> dest_fun of
        Const (\<^const_name>‹trimmed›, _) => @{thm trimmed_eq_cong}
      | Const (\<^const_name>‹trimmed_pos›, _) => @{thm trimmed_pos_eq_cong}
      | Const (\<^const_name>‹trimmed_neg›, _) => @{thm trimmed_neg_eq_cong}
      | _ => raise THM ("simplify_trimmed_expansion", 2, [thm, trimmed_thm])
  in
    (@{thm expands_to_meta_eq_cong} OF [thm, eq_thm], 
      trimmed_cong_thm OF [trimmed_thm, eq_thm])     
  end
fun retrim_expansion ectxt (thm, basis) =
  let
    val (c, thm, eq_thm) = whnf_expansion ectxt thm
  in
    case c of
      NONE => (thm, eq_thm)
    | SOME c =>
      if fastype_of c = \<^typ>‹real› then 
        (thm, eq_thm) 
      else
        let
          val c_thm = thm RS @{thm expands_to_hd''}
          val (c_thm', eq_thm') = retrim_expansion ectxt (c_thm, tl_basis basis)
          val thm = @{thm expands_to_trim_cong} OF [thm, c_thm']
        in
          (thm, @{thm trim_lift_eq} OF [eq_thm, eq_thm'])
        end
  end
fun retrim_pos_expansion ectxt (thm, basis, trimmed_thm) =
  let
    val (thm', eq_thm) = retrim_expansion ectxt (thm, basis)
  in
    (thm', eq_thm, @{thm trimmed_pos_eq_cong} OF [trimmed_thm, eq_thm])
  end
fun try_drop_leading_term_ex fail ectxt thm =
  let
    val exp = get_expansion thm
  in
    if fastype_of exp = \<^typ>‹real› then
      NONE
    else if fastype_of (get_coeff exp) = \<^typ>‹real› then
      case zeroness_oracle fail (SOME Simple_Trim) ectxt (get_coeff exp) of
        (IsZero, SOME zero_thm) => SOME (@{thm drop_zero_ms'} OF [zero_thm, thm])
      | _ => NONE
    else
      let
        val c = get_coeff exp
        val T = fastype_of c
        val t = Const (\<^const_name>‹eval›, T --> \<^typ>‹real ⇒ real›) $ c
      in
        case ev_zeroness_oracle ectxt t of
          SOME zero_thm => SOME (@{thm expands_to_drop_zero} OF [zero_thm, thm])
        | _ => NONE
      end
  end
fun try_drop_leading_term ectxt thm =
  let
    fun err () =
      let
        val ctxt = get_ctxt ectxt
        val exp = get_expansion thm
        val c = get_coeff exp
        val t = 
          if fastype_of c = \<^typ>‹real› then c else c |> dest_arg
        val t = simplify_term' (get_facts ectxt) ctxt t
        val _ =
          if #verbose (#ctxt ectxt) then
            let
              val p = Pretty.str ("real_asymp failed to prove that the following term is zero: ")
              val p = Pretty.chunks [p, Pretty.indent 2 (Syntax.pretty_term ctxt t)]
            in
              Pretty.writeln p
            end else ()
      in
        raise TERM ("try_drop_leading_term", [t])
      end
  in
    case try_drop_leading_term_ex true ectxt thm of
      NONE => err ()
    | SOME thm => thm
  end
datatype trim_result =
    Trimmed of zeroness * trimmed_thm option
  | Aborted of order
fun cstrip_assms ct =
  case Thm.term_of ct of
    \<^term>‹(==>)› $ _ $ _ => cstrip_assms (snd (Thm.dest_implies ct))
  | _ => ct
fun trim_expansion_while_greater strict es fail mode ectxt (thm, basis) = 
  let
    val (_, thm, _) = whnf_expansion ectxt thm
    val thm = simplify_expansion ectxt thm
    val cexp = thm |> Thm.cprop_of |> cstrip_assms |> Thm.dest_arg |> Thm.dest_fun |> Thm.dest_arg
    val c = try_get_coeff (get_expansion thm)
    fun lift_trimmed_thm nz thm =
      let
        val cexp = thm |> Thm.cprop_of |> cstrip_assms |> Thm.dest_arg |> Thm.dest_fun |> Thm.dest_arg
        val lift_thm =
          case nz of
            IsNonZero => @{thm trimmed_eq_cong[rotated, OF _ lift_trimmed]}
          | IsPos => @{thm trimmed_pos_eq_cong[rotated, OF _ lift_trimmed_pos]}
          | IsNeg => @{thm trimmed_neg_eq_cong[rotated, OF _ lift_trimmed_neg]}
          | _ => raise TERM ("Unexpected zeroness result in trim_expansion", [])
      in 
        Thm.reflexive cexp RS lift_thm
      end        
    fun trimmed_real_thm nz = Thm.reflexive cexp RS (
      case nz of
        IsNonZero => @{thm trimmed_eq_cong[rotated, OF _ lift_trimmed[OF trimmed_realI]]}
      | IsPos => @{thm trimmed_pos_eq_cong[rotated, OF _ lift_trimmed_pos[OF trimmed_pos_realI]]}
      | IsNeg => @{thm trimmed_neg_eq_cong[rotated, OF _ lift_trimmed_neg[OF trimmed_neg_realI]]}
      | _ => raise TERM ("Unexpected zeroness result in trim_expansion", []))
    fun do_trim es =
      let
        val c = the c
        val T = fastype_of c
        val t = Const (\<^const_name>‹eval›, T --> \<^typ>‹real ⇒ real›) $ c
      in
        if T = \<^typ>‹real› then (
          case zeroness_oracle fail mode ectxt c of
            (IsZero, SOME zero_thm) => 
              trim_expansion_while_greater strict es fail mode ectxt
                (@{thm drop_zero_ms'} OF [zero_thm, thm], basis)
          | (nz, SOME nz_thm) => (thm, Trimmed (nz, SOME (nz_thm RS trimmed_real_thm nz)), [])
          | (nz, NONE) => (thm, Trimmed (nz, NONE), []))
        else
          case trim_expansion_while_greater strict (Option.map tl es) fail mode ectxt
                 (thm RS @{thm expands_to_hd''}, tl_basis basis) of
            (c_thm', Aborted ord, thms) =>
              (@{thm expands_to_trim_cong} OF [thm, c_thm'], Aborted ord, thms)
          | (c_thm', Trimmed (nz, trimmed_thm), thms) =>
              let
                val thm = (@{thm expands_to_trim_cong} OF [thm, c_thm'])
                fun err () =
                  raise TERM ("trim_expansion: zero coefficient should have been trimmed", [c])
              in
                case (nz, trimmed_thm) of
                  (IsZero, _) => 
                    if #verbose (#ctxt ectxt) then
                      let
                        val ctxt = get_ctxt ectxt
                        val t' = t |> simplify_eval ctxt |> simplify_term' (get_facts ectxt) ctxt
                        val p = Pretty.str ("trim_expansion failed to recognise zeroness of " ^
                          "the following term:")
                        val p = Pretty.chunks [p, Pretty.indent 2 (Syntax.pretty_term ctxt t')]
                        val _ = Pretty.writeln p
                      in
                        err ()
                      end
                    else err ()
                | (_, SOME trimmed_thm) =>
                      (thm, Trimmed (nz, SOME (trimmed_thm RS lift_trimmed_thm nz thm)), thms)
                | (_, NONE) => (thm, Trimmed (nz, NONE), thms)
              end
      end
    val minus = \<^term>‹(-) :: real => real => real›
  in
    case (c, es) of
      (NONE, _) => (thm, Trimmed (IsZero, NONE), [])
    | (SOME c, SOME (e' :: _)) =>
        let
          val e = get_exponent (get_expansion thm)
        in
          case zeroness_oracle true (SOME Sgn_Trim) ectxt (minus $ e $ e') of
            (IsPos, SOME pos_thm) => (
              case try_drop_leading_term_ex false ectxt thm of
                SOME thm =>
                  trim_expansion_while_greater strict es fail mode ectxt (thm, basis)
              | NONE => do_trim NONE |> @{apply 3(3)} (fn thms => (IsPos, pos_thm) :: thms))
          | (IsNeg, SOME neg_thm) => (thm, Aborted LESS, [(IsNeg, neg_thm)])
          | (IsZero, SOME zero_thm) =>
              if not strict andalso fastype_of c = \<^typ>‹real› then
                (thm, Aborted EQUAL, [(IsZero, zero_thm)])
              else (
                case try_drop_leading_term_ex false ectxt thm of
                  SOME thm => trim_expansion_while_greater strict es fail mode ectxt (thm, basis)
                | NONE => (do_trim es |> @{apply 3(3)} (fn thms => (IsZero, zero_thm) :: thms)))
          | _ => do_trim NONE
        end
    | _ => (
      case try_drop_leading_term_ex false ectxt thm of
          SOME thm => trim_expansion_while_greater strict es fail mode ectxt (thm, basis)
        | NONE => do_trim NONE)
  end
fun trim_expansion fail mode ectxt (thm, basis) = 
  case trim_expansion_while_greater false NONE fail mode ectxt (thm, basis) of
    (thm, Trimmed (zeroness, trimmed_thm), _) => (thm, zeroness, trimmed_thm)
  | _ => raise Match
fun determine_trimmed_sgn ectxt exp =
  if fastype_of exp = \<^typ>‹real› then
    (case zeroness_oracle true (SOME Sgn_Trim) ectxt exp of
       (IsPos, SOME thm) => (IsPos, thm RS @{thm trimmed_pos_realI})
     | (IsNeg, SOME thm) => (IsNeg, thm RS @{thm trimmed_neg_realI})
     | _ => raise TERM ("determine_trimmed_sgn", []))
  else
    let
      val ct = Thm.cterm_of (get_ctxt ectxt) exp
    in
      (case determine_trimmed_sgn ectxt (get_coeff exp) of
         (IsPos, thm) => (IsPos, @{thm lift_trimmed_pos'} OF [thm, Thm.reflexive ct])
       | (IsNeg, thm) => (IsNeg, @{thm lift_trimmed_neg'} OF [thm, Thm.reflexive ct])
       | _ => raise TERM ("determine_trimmed_sgn", []))
    end
fun mk_compare_expansions_const T =
      Const (\<^const_name>‹compare_expansions›, 
        T --> T --> \<^typ>‹cmp_result × real × real›)
datatype comparison_result =
  Cmp_Dominated of order * thm list * zeroness * trimmed_thm * expansion_thm * expansion_thm 
| Cmp_Asymp_Equiv of thm * thm
fun compare_expansions' _ (thm1, thm2, SEmpty) = Cmp_Asymp_Equiv (thm1, thm2)
  | compare_expansions' ectxt (thm1, thm2, basis) =
  let
    fun lift_trimmed_thm nz =
      case nz of
        IsPos => @{thm lift_trimmed_pos}
      | IsNeg => @{thm lift_trimmed_neg}
      | _ => raise TERM ("Unexpected zeroness result in compare_expansions'", [])
    val (e1, e2) = apply2 (get_expansion #> get_exponent) (thm1, thm2)
    val e = \<^term>‹(-) :: real => _› $ e1 $ e2
    fun trim thm = trim_expansion true (SOME Sgn_Trim) ectxt (thm, basis)
    val try_drop = Option.map (whnf_expansion ectxt #> #2) o try_drop_leading_term_ex false ectxt
    fun handle_result ord zeroness trimmed_thm thm1 thm2 =
      let
        val (e1, e2) = apply2 (get_expansion #> get_exponent) (thm1, thm2)
        val e = \<^term>‹(-) :: real => _› $ e1 $ e2
        val mode = if ord = LESS then Neg_Trim else Pos_Trim
      in
        case zeroness_oracle true (SOME mode) ectxt e of
          (_, SOME e_thm) => Cmp_Dominated (ord, [e_thm], zeroness, trimmed_thm, thm1, thm2)
        | _ => raise Match
      end
    fun recurse e_zero_thm =
      case basis of
        SNE (SSng _) => Cmp_Asymp_Equiv (thm1, thm2)
      | _ =>
        let
          val (thm1', thm2') = apply2 (fn thm => thm RS @{thm expands_to_hd''}) (thm1, thm2)
          val (thm1', thm2') = apply2 (whnf_expansion ectxt #> #2) (thm1', thm2')
        in
          case compare_expansions' ectxt (thm1', thm2', tl_basis basis) of
            Cmp_Dominated (order, e_thms, zeroness, trimmed_thm, thm1', thm2') =>
              Cmp_Dominated (order, e_zero_thm :: e_thms, zeroness,
                trimmed_thm RS lift_trimmed_thm zeroness,
                @{thm expands_to_trim_cong} OF [thm1, thm1'],
                @{thm expands_to_trim_cong} OF [thm2, thm2'])
          | Cmp_Asymp_Equiv (thm1', thm2') => Cmp_Asymp_Equiv
              (@{thm expands_to_trim_cong} OF [thm1, thm1'],
                @{thm expands_to_trim_cong} OF [thm2, thm2'])
        end
  in
    case zeroness_oracle false (SOME Sgn_Trim) ectxt e of
      (IsPos, SOME _) => (
        case try_drop thm1 of
          SOME thm1 => compare_expansions' ectxt (thm1, thm2, basis)
        | NONE => (
            case trim thm1 of
              (thm1, zeroness, SOME trimmed_thm) =>
                handle_result GREATER zeroness trimmed_thm thm1 thm2
            | _ => raise TERM ("compare_expansions", map get_expansion [thm1, thm2])))
    | (IsNeg, SOME _) => (
        case try_drop thm2 of
          SOME thm2 => compare_expansions' ectxt (thm1, thm2, basis)
        | NONE => (
            case trim thm2 of
              (thm2, zeroness, SOME trimmed_thm) =>
                handle_result LESS zeroness trimmed_thm thm1 thm2
            | _ => raise TERM ("compare_expansions", map get_expansion [thm1, thm2])))
    | (IsZero, SOME e_zero_thm) => (
        case try_drop thm1 of
          SOME thm1 => compare_expansions' ectxt (thm1, thm2, basis)
        | NONE => (
            case try_drop thm2 of
              SOME thm2 => compare_expansions' ectxt (thm1, thm2, basis)
            | NONE => recurse e_zero_thm))
    | _ =>
        case try_drop thm1 of
          SOME thm1 => compare_expansions' ectxt (thm1, thm2, basis)
        | NONE => (
            case try_drop thm2 of
              SOME thm2 => compare_expansions' ectxt (thm1, thm2, basis)
            | NONE => raise TERM ("compare_expansions", [e1, e2]))
  end
fun prove_compare_expansions ord [thm] = (
      case ord of
        LESS => @{thm compare_expansions_LT_I} OF [thm]
      | GREATER => @{thm compare_expansions_GT_I} OF [thm]
      | EQUAL => @{thm compare_expansions_same_exp[OF _ compare_expansions_real]} OF [thm])
  | prove_compare_expansions ord (thm :: thms) =
      @{thm compare_expansions_same_exp} OF [thm, prove_compare_expansions ord thms]
  | prove_compare_expansions _ [] = raise Match
val ev_zero_pos_thm = Eventuallize.eventuallize \<^context>
  @{lemma "∀x::real. f x = 0 ⟶ g x > 0 ⟶ f x < g x" by auto} NONE
  OF @{thms _ expands_to_imp_eventually_pos}
val ev_zero_neg_thm = Eventuallize.eventuallize \<^context>
  @{lemma "∀x::real. f x = 0 ⟶ g x < 0 ⟶ f x > g x" by auto} NONE
  OF @{thms _ expands_to_imp_eventually_neg}
val ev_zero_zero_thm = Eventuallize.eventuallize \<^context>
  @{lemma "∀x::real. f x = 0 ⟶ g x = 0 ⟶ f x = g x" by auto} NONE
fun compare_expansions_trivial ectxt (thm1, thm2, basis) =
  case try_prove_ev_eq ectxt (apply2 get_expanded_fun (thm1, thm2)) of
    SOME thm => SOME (EQUAL, thm, thm1, thm2)
  | NONE =>
      case apply2 (ev_zeroness_oracle ectxt o get_expanded_fun) (thm1, thm2) of
        (NONE, NONE) => NONE
      | (SOME zero1_thm, NONE) => (
          case trim_expansion true (SOME Sgn_Trim) ectxt (thm2, basis) of
            (thm2, IsPos, SOME trimmed2_thm) =>
              SOME (LESS, ev_zero_pos_thm OF
                [zero1_thm, get_basis_wf_thm basis, thm2, trimmed2_thm], thm1, thm2)
          | (thm2, IsNeg, SOME trimmed2_thm) =>
              SOME (GREATER, ev_zero_neg_thm OF
                [zero1_thm, get_basis_wf_thm basis, thm2, trimmed2_thm], thm1, thm2)
          | _ => raise TERM ("Unexpected zeroness result in compare_expansions", []))
      | (NONE, SOME zero2_thm) => (
          case trim_expansion true (SOME Sgn_Trim) ectxt (thm1, basis) of
            (thm1, IsPos, SOME trimmed1_thm) =>
              SOME (GREATER, ev_zero_pos_thm OF
                [zero2_thm, get_basis_wf_thm basis, thm1, trimmed1_thm], thm1, thm2)
          | (thm1, IsNeg, SOME trimmed1_thm) =>
              SOME (LESS, ev_zero_neg_thm OF
                [zero2_thm, get_basis_wf_thm basis, thm1, trimmed1_thm], thm1, thm2)
          | _ => raise TERM ("Unexpected zeroness result in compare_expansions", []))
      | (SOME zero1_thm, SOME zero2_thm) =>
          SOME (EQUAL, ev_zero_zero_thm OF [zero1_thm, zero2_thm] , thm1, thm2)
fun compare_expansions ectxt (thm1, thm2, basis) =
  case compare_expansions_trivial ectxt (thm1, thm2, basis) of
    SOME res => res
  | NONE =>
    let
      val (_, thm1, _) = whnf_expansion ectxt thm1
      val (_, thm2, _) = whnf_expansion ectxt thm2
    in
      case compare_expansions' ectxt (thm1, thm2, basis) of
        Cmp_Dominated (order, e_thms, zeroness, trimmed_thm, thm1, thm2) =>
          let
            val wf_thm = get_basis_wf_thm basis
            val cmp_thm = prove_compare_expansions order e_thms
            val trimmed_thm' = trimmed_thm RS
              (if zeroness = IsPos then @{thm trimmed_pos_imp_trimmed}
                 else @{thm trimmed_neg_imp_trimmed})
            val smallo_thm = 
              (if order = LESS then @{thm compare_expansions_LT} else @{thm compare_expansions_GT}) OF
                [cmp_thm, trimmed_thm', thm1, thm2, wf_thm]
            val thm' = 
              if zeroness = IsPos then @{thm smallo_trimmed_imp_eventually_less} 
              else @{thm smallo_trimmed_imp_eventually_greater}
            val result_thm =
              thm' OF [smallo_thm, if order = LESS then thm2 else thm1, wf_thm, trimmed_thm]
          in
            (order, result_thm, thm1, thm2)
          end
       | Cmp_Asymp_Equiv (thm1, thm2) =>
          let
            val thm = @{thm expands_to_minus} OF [get_basis_wf_thm basis, thm1, thm2]
            val (order, result_thm) =
              case trim_expansion true (SOME Sgn_Trim) ectxt (thm, basis) of
                (thm, IsPos, SOME pos_thm) => (GREATER,
                  @{thm expands_to_imp_eventually_gt} OF [get_basis_wf_thm basis, thm, pos_thm])
              | (thm, IsNeg, SOME neg_thm) => (LESS,
                  @{thm expands_to_imp_eventually_lt} OF [get_basis_wf_thm basis, thm, neg_thm])
              | _ => raise TERM ("Unexpected zeroness result in prove_eventually_less", [])
          in
            (order, result_thm, thm1, thm2)
          end
    end
fun raise_trimming_error ectxt thm =
  let
    val ctxt = get_ctxt ectxt
    fun lead_coeff exp =
      if fastype_of exp = \<^typ>‹real› then exp else lead_coeff (get_coeff exp)
    val c = lead_coeff (get_expansion thm)
    fun err () =
      let
        val t = simplify_term' (get_facts ectxt) ctxt c
        val _ =
          if #verbose (#ctxt ectxt) then
            let
              val p = Pretty.str 
                ("real_asymp failed to determine whether the following constant is zero:")
              val p = Pretty.chunks [p, Pretty.indent 2 (Syntax.pretty_term ctxt t)]
            in
              Pretty.writeln p
            end else ()
      in
        raise TERM ("zeroness_oracle", [t])
      end
  in
    err ()
  end
    
fun solve_eval_eq thm =
  case try (fn _ => @{thm refl} RS thm) () of
    SOME thm' => thm'
  | NONE => 
      case try (fn _ => @{thm eval_real_def} RS thm) () of
        SOME thm' => thm'
      | NONE => @{thm eval_ms.simps} RS thm
fun ln_expansion _ _ _ SEmpty = raise TERM ("ln_expansion: empty basis", [])
  | ln_expansion ectxt trimmed_thm thm (SNE basis) =
  let
    fun trailing_exponent expr (SSng _) = get_exponent expr
      | trailing_exponent expr (SCons (_, _, tl)) = trailing_exponent (get_coeff expr) tl
    val e = trailing_exponent (get_expansion thm) basis
    fun ln_expansion_aux trimmed_thm zero_thm thm basis =
      let
        val t = betapply (\<^term>‹λ(f::real ⇒ real) x. f x - 1 :: real›, get_expanded_fun thm)
      in
        case ev_zeroness_oracle ectxt t of
          NONE => ln_expansion_aux' trimmed_thm zero_thm thm basis
        | SOME zero_thm =>
            @{thm expands_to_ln_eventually_1} OF 
              [get_basis_wf_thm' basis, mk_expansion_level_eq_thm' basis, zero_thm]
      end
    and ln_expansion_aux' trimmed_thm zero_thm thm (SSng {wf_thm, ...}) =
          ( @{thm expands_to_ln} OF
            [trimmed_thm, wf_thm, thm, 
              @{thm expands_to_ln_aux_0} OF [zero_thm, @{thm expands_to_ln_const}]])
          |> solve_eval_eq
      | ln_expansion_aux' trimmed_thm zero_thm thm (SCons ({wf_thm, ...}, {ln_thm, ...}, basis')) =
          let
            val c_thm = 
              ln_expansion_aux (trimmed_thm RS @{thm trimmed_pos_hd_coeff}) zero_thm 
                (expands_to_hd thm) basis'
            val e = get_exponent (get_expansion thm)
            val c_thm' =
              case zeroness_oracle true NONE ectxt e of
                (IsZero, SOME thm) =>
                  @{thm expands_to_ln_to_expands_to_ln_eval [OF expands_to_ln_aux_0]} OF [thm,c_thm]
              | _ => 
                case try_prove_real_eq false ectxt (e, \<^term>‹1::real›) of
                  SOME thm => 
                    @{thm expands_to_ln_to_expands_to_ln_eval [OF expands_to_ln_aux_1]}
                      OF [thm, wf_thm, c_thm, ln_thm]
                | NONE => 
                    @{thm expands_to_ln_to_expands_to_ln_eval [OF expands_to_ln_aux]} 
                      OF [wf_thm, c_thm, ln_thm]
          in
            (@{thm expands_to_ln} OF [trimmed_thm, wf_thm, thm, c_thm'])
            |> solve_eval_eq
          end
  in
    case zeroness_oracle true NONE ectxt e of
      (IsZero, SOME zero_thm) => (ln_expansion_aux trimmed_thm zero_thm thm basis, SNE basis)
    | _ => 
        let
          val basis' = insert_ln (SNE basis)
          val lifting = mk_lifting (get_basis_list' basis) basis'
          val thm' = lift_expands_to_thm lifting thm
          val trimmed_thm' = lift_trimmed_pos_thm lifting trimmed_thm
          val (thm'', eq_thm) = retrim_expansion ectxt (thm', basis')
          val trimmed_thm'' = @{thm trimmed_pos_eq_cong} OF [trimmed_thm', eq_thm]
        in
          ln_expansion ectxt trimmed_thm'' thm'' basis'
        end
  end
fun adjust_exp_basis basis basis' ln_smallo_thm =
  if length (get_basis_list basis) = length (get_basis_list basis') + 1 then
    basis
  else
    let
      val SNE (SCons (info, ln_info, tail)) = basis
      val SNE tail' = basis'
      val wf_thms = map get_basis_wf_thm [basis, basis']
      val wf_thm' = 
        case
          get_first (fn f => try f ())
            [fn _ => @{thm basis_wf_lift_modification} OF wf_thms,
             fn _ => @{thm basis_wf_insert_exp_near} OF (wf_thms @ [ln_smallo_thm]),
             fn _ => @{thm basis_wf_insert_exp_near} OF (wf_thms @ 
               [ln_smallo_thm RS @{thm basis_wf_insert_exp_uminus'}])] of
          SOME wf_thm => wf_thm
        | _ => raise TERM ("Lifting basis modification in exp_expansion failed.", map Thm.concl_of (wf_thms @ [ln_smallo_thm]))
      val info' = {wf_thm = wf_thm', head = #head info}
      val lifting = mk_lifting (get_basis_list' tail) basis'
      val ln_info' = 
        {trimmed_thm = lift_trimmed_pos_thm lifting (#trimmed_thm ln_info),
         ln_thm = lift_expands_to_thm lifting (#ln_thm ln_info)}
    in
      SNE (SCons (info', ln_info', tail'))
    end
fun insert_exp _ _ _ _ _ SEmpty = raise TERM ("insert_exp", [])
  | insert_exp t ln_thm ln_smallo_thm ln_trimmed_thm lim_thm (SNE basis) =
      let
        val head = Envir.beta_eta_contract (\<^term>‹λ(f::real⇒real) x. exp (f x)› $ t)
        val ln_smallo_thm = ln_smallo_thm RS @{thm ln_smallo_ln_exp}
        val wf_thm = @{thm basis_wf_manyI} OF [lim_thm, ln_smallo_thm, get_basis_wf_thm' basis]
        val basis' = SNE (SCons ({wf_thm = wf_thm, head = head}, 
          {ln_thm = ln_thm, trimmed_thm = ln_trimmed_thm} , basis))
      in
        check_basis basis'
      end 
fun exp_expansion _ thm SEmpty = (thm RS @{thm expands_to_exp_real}, SEmpty)
  | exp_expansion ectxt thm basis =
    let
      val (_, thm, _) = whnf_expansion ectxt thm
    in
      case ev_zeroness_oracle ectxt (get_eval (get_expansion thm)) of
        SOME zero_thm => 
          (@{thm expands_to_exp_zero} OF 
             [thm, zero_thm, get_basis_wf_thm basis, mk_expansion_level_eq_thm basis], basis)
      | NONE =>
          let
            val ln =
              Option.map (fn x => (#ln_thm x, #trimmed_thm x)) (get_ln_info basis)
            val ln = Option.map (fn (x, y) => retrim_pos_expansion ectxt (x, basis, y)) ln
            val es' = \<^term>‹0::real› :: (
              case ln of
                NONE => []
              | SOME (ln_thm, _, _) => get_exponents (get_expansion ln_thm))
            val trim_result =
              trim_expansion_while_greater true (SOME es') false (SOME Simple_Trim) ectxt (thm, basis)
          in
            exp_expansion' ectxt trim_result ln basis
          end
    end
and exp_expansion' _ (thm, _, _) _ SEmpty = (thm RS @{thm expands_to_exp_real}, SEmpty)
  | exp_expansion' ectxt (thm, trim_result, e_thms) ln basis =
  let
    val exp = get_expansion thm
    val wf_thm = get_basis_wf_thm basis
    val f = get_expanded_fun thm
    fun exp_expansion_insert ln_smallo_thm = (
      case determine_trimmed_sgn ectxt exp of
        (IsPos, trimmed_thm) =>
          let
            val [lim_thm, ln_thm', thm'] =
              @{thms expands_to_exp_insert_pos}
              |> map (fn thm' => thm' OF [thm, wf_thm, trimmed_thm, ln_smallo_thm])
            val basis' = insert_exp f ln_thm' ln_smallo_thm trimmed_thm lim_thm basis
          in
            (thm', basis')
          end
      | (IsNeg, trimmed_thm) =>
          let
            val [lim_thm, ln_thm', ln_trimmed_thm, thm'] = 
              @{thms expands_to_exp_insert_neg}
              |> map (fn thm' => thm' OF [thm, wf_thm, trimmed_thm, ln_smallo_thm])
            val ln_smallo_thm = ln_smallo_thm RS @{thm basis_wf_insert_exp_uminus}
            val f' = Envir.beta_eta_contract (\<^term>‹λ(f::real⇒real) x. -f x› $ f)
            val basis' = insert_exp f' ln_thm' ln_smallo_thm ln_trimmed_thm lim_thm basis
          in
            (thm', basis')
          end
      | _ => raise TERM ("Unexpected zeroness result in exp_expansion", []))
    fun lexord (IsNeg :: _) = LESS
      | lexord (IsPos :: _) = GREATER
      | lexord (IsZero :: xs) = lexord xs
      | lexord [] = EQUAL
      | lexord _ = raise Match
    val compare_result = lexord (map fst e_thms)
  in
    case (trim_result, e_thms, compare_result) of
      (Aborted _, (IsNeg, e_neg_thm) :: _, _) =>
        
        (@{thm expands_to_exp_neg} OF [thm, get_basis_wf_thm basis, e_neg_thm], basis)
    | (Trimmed (_, SOME trimmed_thm), (IsPos, e_pos_thm) :: _, GREATER) =>
        
        let
          val ln_smallo_thm =
            @{thm basis_wf_insert_exp_pos} OF [thm, get_basis_wf_thm basis, trimmed_thm, e_pos_thm]
        in
          exp_expansion_insert ln_smallo_thm
        end
    | (Trimmed (_, SOME trimmed_thm), _, GREATER) =>
        
        let
          val ln_thm =
            case ln of
              SOME (ln_thm, _, _) => ln_thm
            | NONE => raise TERM ("TODO blubb", [])
          val ln_thm = @{thm expands_to_lift''} OF [get_basis_wf_thm basis, ln_thm]
          val ln_smallo_thm = 
             @{thm compare_expansions_GT} OF [prove_compare_expansions GREATER (map snd e_thms),
               trimmed_thm, thm, ln_thm, get_basis_wf_thm basis]
        in
          exp_expansion_insert ln_smallo_thm
        end
    | (Aborted LESS, (IsZero, e_zero_thm) :: e_thms', _) =>
        
        let
          val (ln_thm, trimmed_thm) =
            case ln of
              SOME (ln_thm, _, trimmed_thm) =>
                (ln_thm, trimmed_thm RS @{thm trimmed_pos_imp_trimmed})
            | NONE => raise TERM ("TODO foo", [])
          val c_thm = expands_to_hd thm
          val ln_smallo_thm =
            @{thm compare_expansions_LT} OF [prove_compare_expansions LESS (map snd e_thms'),
              trimmed_thm, c_thm, ln_thm, get_basis_wf_thm (tl_basis basis)]
          val (c_thm, c_basis) = exp_expansion ectxt c_thm (tl_basis basis)
          val basis' = adjust_exp_basis basis c_basis ln_smallo_thm
          val wf_thm = get_basis_wf_thm basis'
          val thm' = lift basis' thm
          val (thm'', _) = retrim_expansion ectxt (thm', basis')
        in
          (@{thm expands_to_exp_0} OF [thm'', wf_thm, e_zero_thm, c_thm], basis')
        end
    | (Trimmed _, [(IsZero, e_zero_thm)], EQUAL) =>
        
        (@{thm expands_to_exp_0_real} OF [thm, wf_thm, e_zero_thm], basis)
    | (Trimmed _, (_, e_zero_thm) :: _, EQUAL) =>
        
        let
          val ln_thm =
            case ln of
              SOME (ln_thm, _, _) => ln_thm
            | NONE => raise TERM ("TODO blargh", [])
          val c =
            case (thm, ln_thm) |> apply2 (get_expansion #> get_lead_coeff) of
              (c1, c2) => \<^term>‹(/) :: real => _› $ c1 $ c2
          val c = Thm.cterm_of (get_ctxt ectxt) c
          
          val thm' = 
            @{thm expands_to_exp_0_pull_out1} 
                OF [thm, ln_thm, wf_thm, e_zero_thm, Thm.reflexive c]
          val (thm'', basis') = exp_expansion ectxt thm' basis
          val pat = ConsPat ("MS", [AnyPat ("_", 0), AnyPat ("_", 0)])
          val (_, _, conv) = match ectxt pat (get_expansion thm'') (SOME [])
          val eq_thm = conv (Thm.cterm_of (get_ctxt ectxt) (get_expansion thm''))
          val thm''' = @{thm expands_to_meta_eq_cong} OF [thm'', eq_thm]
          val thm'''' = 
            case get_intyness (get_ctxt ectxt) c of
              No_Nat =>
                @{thm expands_to_exp_0_pull_out2} OF [thm''', get_basis_wf_thm basis']
             | Nat nat_thm =>
                @{thm expands_to_exp_0_pull_out2_nat} OF 
                  [thm''', get_basis_wf_thm basis', nat_thm]
             | Neg_Nat nat_thm =>
                @{thm expands_to_exp_0_pull_out2_neg_nat} OF 
                  [thm''', get_basis_wf_thm basis', nat_thm]
        in
          (thm'''', basis')
        end
    | (Trimmed (IsZero, _), [], _) =>
        
        (@{thm expands_to_exp_MSLNil} OF [thm, get_basis_wf_thm basis], basis)
    | (Trimmed (_, NONE), _, GREATER) =>
        
        raise_trimming_error ectxt thm
    | _ => raise Match
  end
fun powr_expansion ectxt (thm1, thm2, basis) =
      case ev_zeroness_oracle ectxt (get_expanded_fun thm1) of
        SOME zero_thm =>
          (@{thm expands_to_powr_0} OF
             [zero_thm, Thm.reflexive (Thm.cterm_of (get_ctxt ectxt) (get_expanded_fun thm2)),
              get_basis_wf_thm basis, mk_expansion_level_eq_thm basis],
           basis)
      | NONE =>
          let
            val (thm1, _, SOME trimmed_thm) =
              trim_expansion true (SOME Pos_Trim) ectxt (thm1, basis)
            val (ln_thm, basis') = ln_expansion ectxt trimmed_thm thm1 basis
            val thm2' = lift basis' thm2 |> simplify_expansion ectxt
            val mult_thm = @{thm expands_to_mult} OF [get_basis_wf_thm basis', ln_thm, thm2']
            val (exp_thm, basis'') = exp_expansion ectxt mult_thm basis'
            val thm = @{thm expands_to_powr} OF 
              [trimmed_thm, get_basis_wf_thm basis, thm1, exp_thm]
          in  
            (thm, basis'')
          end
fun powr_nat_expansion ectxt (thm1, thm2, basis) =
      case ev_zeroness_oracle ectxt (get_expanded_fun thm1) of
        SOME zero_thm => (
          case ev_zeroness_oracle ectxt (get_expanded_fun thm2) of
            SOME zero'_thm => (@{thm expands_to_powr_nat_0_0} OF
             [zero_thm, zero'_thm, get_basis_wf_thm basis, mk_expansion_level_eq_thm basis], basis)
          | NONE => (
              case trim_expansion true (SOME Simple_Trim) ectxt (thm2, basis) of
                (thm2, _, SOME trimmed_thm) =>
                  (@{thm expands_to_powr_nat_0} OF [zero_thm, thm2, trimmed_thm, 
                     get_basis_wf_thm basis, mk_expansion_level_eq_thm basis], basis)))
      | NONE =>
          let
            val (thm1, _, SOME trimmed_thm) =
              trim_expansion true (SOME Pos_Trim) ectxt (thm1, basis)
            val (ln_thm, basis') = ln_expansion ectxt trimmed_thm thm1 basis
            val thm2' = lift basis' thm2 |> simplify_expansion ectxt
            val mult_thm = @{thm expands_to_mult} OF [get_basis_wf_thm basis', ln_thm, thm2']
            val (exp_thm, basis'') = exp_expansion ectxt mult_thm basis'
            val thm = @{thm expands_to_powr_nat} OF 
              [trimmed_thm, get_basis_wf_thm basis, thm1, exp_thm]
          in  
            (thm, basis'')
          end
fun is_numeral t =
  let
    val _ = HOLogic.dest_number t
  in
    true
  end
    handle TERM _ => false
fun power_expansion ectxt (thm, n, basis) =
      case ev_zeroness_oracle ectxt (get_expanded_fun thm) of
        SOME zero_thm => @{thm expands_to_power_0} OF
          [zero_thm, get_basis_wf_thm basis, mk_expansion_level_eq_thm basis,
             Thm.reflexive (Thm.cterm_of (get_ctxt ectxt) n)]
      | NONE => (
          case trim_expansion true (SOME Simple_Trim) ectxt (thm, basis) of
            (thm', _, SOME trimmed_thm) =>
              let
                val ctxt = get_ctxt ectxt
                val thm =
                  if is_numeral n then @{thm expands_to_power[where abort = True]}
                    else @{thm expands_to_power[where abort = False]}
                val thm = 
                  Drule.infer_instantiate' ctxt [NONE, NONE, NONE, SOME (Thm.cterm_of ctxt n)] thm
              in                
                thm OF [trimmed_thm, get_basis_wf_thm basis, thm']
              end
          | _ => raise TERM ("Unexpected zeroness result in power_expansion", []))
fun powr_const_expansion ectxt (thm, p, basis) =
  let
    val pthm = Thm.reflexive (Thm.cterm_of (get_ctxt ectxt) p)
  in
    case ev_zeroness_oracle ectxt (get_expanded_fun thm) of
      SOME zero_thm => @{thm expands_to_powr_const_0} OF 
        [zero_thm, get_basis_wf_thm basis, mk_expansion_level_eq_thm basis, pthm]
    | NONE =>
        case trim_expansion true (SOME Pos_Trim) ectxt (thm, basis) of
          (_, _, NONE) => raise TERM ("Unexpected zeroness result for powr", [])
        | (thm, _, SOME trimmed_thm) =>
            (if is_numeral p then @{thm expands_to_powr_const[where abort = True]}
                 else @{thm expands_to_powr_const[where abort = False]})
               OF [trimmed_thm, get_basis_wf_thm basis, thm, pthm]
  end
fun sgn_expansion ectxt (thm, basis) =
  let
    val thms = [get_basis_wf_thm basis, mk_expansion_level_eq_thm basis]
  in
    case ev_zeroness_oracle ectxt (get_expanded_fun thm) of
      SOME zero_thm => @{thm expands_to_sgn_zero} OF (zero_thm :: thms)
    | NONE =>
        case trim_expansion true (SOME Sgn_Trim) ectxt (thm, basis) of
          (thm, IsPos, SOME trimmed_thm) =>
            @{thm expands_to_sgn_pos} OF ([trimmed_thm, thm] @ thms)
        | (thm, IsNeg, SOME trimmed_thm) =>
            @{thm expands_to_sgn_neg} OF ([trimmed_thm, thm] @ thms)
        | _ => raise TERM ("Unexpected zeroness result in sgn_expansion", [])
  end
fun sin_cos_expansion _ thm SEmpty =
      (thm RS @{thm expands_to_sin_real}, thm RS @{thm expands_to_cos_real})
  | sin_cos_expansion ectxt thm basis =
      let
        val exp = get_expansion thm
        val e = get_exponent exp
      in
        case zeroness_oracle true (SOME Sgn_Trim) ectxt e of
          (IsPos, _) => raise THM ("sin_cos_expansion", 0, [thm])
        | (IsNeg, SOME e_thm) =>
            let
              val [thm1, thm2] = 
                map (fn thm' => thm' OF [e_thm, get_basis_wf_thm basis, thm]) 
                  @{thms expands_to_sin_ms_neg_exp expands_to_cos_ms_neg_exp}
            in
              (thm1, thm2)
            end
        | (IsZero, SOME e_thm) =>
            let
              val (sin_thm, cos_thm) = (sin_cos_expansion ectxt (expands_to_hd thm) (tl_basis basis))
              fun mk_thm thm' = 
                (thm' OF [e_thm, get_basis_wf_thm basis, thm, sin_thm, cos_thm]) |> solve_eval_eq
              val [thm1, thm2] = 
                map mk_thm @{thms expands_to_sin_ms_zero_exp expands_to_cos_ms_zero_exp}
            in
              (thm1, thm2)
            end
        | _ => raise TERM ("Unexpected zeroness result in sin_exp_expansion", [])
      end
fun abconv (t, t') = Envir.beta_eta_contract t aconv Envir.beta_eta_contract t'
fun check_expansion e thm =
  if abconv (expr_to_term e, get_expanded_fun thm) then 
    thm 
  else
let val _ = \<^print> e
val _ = \<^print> (get_expanded_fun thm)
in
    raise TERM ("check_expansion", [Thm.concl_of thm, expr_to_term e])
end
fun minmax_expansion max [less_thm, eq_thm, gt_thm] ectxt (thm1, thm2, basis) = (
      case compare_expansions ectxt (thm1, thm2, basis) of
        (LESS, less_thm', thm1, thm2) => less_thm OF [if max then thm2 else thm1, less_thm']
      | (GREATER, gt_thm', thm1, thm2) => gt_thm OF [if max then thm1 else thm2, gt_thm']
      | (EQUAL, eq_thm', thm1, _) => eq_thm OF [thm1, eq_thm'])
  | minmax_expansion _ _ _ _ = raise Match
val min_expansion =
  minmax_expansion false @{thms expands_to_min_lt expands_to_min_eq expands_to_min_gt}
val max_expansion =
  minmax_expansion true @{thms expands_to_max_lt expands_to_max_eq expands_to_max_gt}
fun zero_expansion basis =
  @{thm expands_to_zero} OF [get_basis_wf_thm basis, mk_expansion_level_eq_thm basis]
fun const_expansion _ basis \<^term>‹0 :: real› = zero_expansion basis
  | const_expansion ectxt basis t =
  let
    val ctxt = get_ctxt ectxt
    val thm = Drule.infer_instantiate' ctxt [NONE, SOME (Thm.cterm_of ctxt t)] 
                @{thm expands_to_const}
  in
    thm OF [get_basis_wf_thm basis, mk_expansion_level_eq_thm basis]
  end
fun root_expansion ectxt (thm, n, basis) =
  let
    val ctxt = get_ctxt ectxt
    fun tac {context = ctxt, ...} =
      HEADGOAL (Method.insert_tac ctxt (get_facts ectxt))
      THEN Local_Defs.unfold_tac ctxt eval_simps
      THEN HEADGOAL (Simplifier.asm_full_simp_tac ctxt)
    fun prove goal =
      try (Goal.prove ctxt [] [] (HOLogic.mk_Trueprop (Term.betapply (goal, n)))) tac
    fun err () =
      let
        val t = simplify_term' (get_facts ectxt) ctxt n
        val _ =
          if #verbose (#ctxt ectxt) then
            let
              val p = Pretty.str ("real_asymp failed to determine whether the following constant " ^
                "is zero or not:")
              val p = Pretty.chunks [p, Pretty.indent 2 (Syntax.pretty_term ctxt t)]
            in
              Pretty.writeln p
            end else ()
      in
        raise TERM ("zeroness_oracle", [n])
      end
    fun aux nz_thm =
      case trim_expansion true (SOME Sgn_Trim) ectxt (thm, basis) of
        (thm, IsPos, SOME trimmed_thm) =>
          @{thm expands_to_root} OF [nz_thm, trimmed_thm, get_basis_wf_thm basis, thm]
      | (thm, IsNeg, SOME trimmed_thm) =>
          @{thm expands_to_root_neg} OF [nz_thm, trimmed_thm, get_basis_wf_thm basis, thm]
      | _ => raise TERM ("Unexpected zeroness result in root_expansion", [])
  in
    case prove \<^term>‹λn::nat. n = 0› of
      SOME zero_thm =>
        @{thm expands_to_0th_root} OF
          [zero_thm, get_basis_wf_thm basis, mk_expansion_level_eq_thm basis, 
             Thm.reflexive (Thm.cterm_of ctxt (get_expanded_fun thm))]
    | NONE =>
        case prove \<^term>‹λn::nat. n > 0› of
          NONE => err ()
        | SOME nz_thm =>
            case ev_zeroness_oracle ectxt (get_expanded_fun thm) of
              SOME zero_thm => @{thm expands_to_root_0} OF
                [nz_thm, zero_thm, get_basis_wf_thm basis, mk_expansion_level_eq_thm basis]
            | NONE => aux nz_thm
  end
fun arctan_expansion _ SEmpty thm =
      @{thm expands_to_real_compose[where g = arctan]} OF [thm]
  | arctan_expansion ectxt basis thm =
      case ev_zeroness_oracle ectxt (get_expanded_fun thm) of
        SOME zero_thm => @{thm expands_to_arctan_zero} OF [zero_expansion basis, zero_thm]
      | NONE =>
          let
            val (thm, _, _) = trim_expansion true (SOME Simple_Trim) ectxt (thm, basis)
            val e = get_exponent (get_expansion thm)
            fun cont ectxt (thm, basis) = arctan_expansion ectxt basis thm
          in
            case zeroness_oracle true (SOME Sgn_Trim) ectxt e of
                (IsNeg, SOME neg_thm) =>
                  @{thm expands_to_arctan_ms_neg_exp} OF [neg_thm, get_basis_wf_thm basis, thm]
              | (IsPos, SOME e_pos_thm) => (
                  case determine_trimmed_sgn ectxt (get_expansion thm) of
                    (IsPos, trimmed_thm) =>
                      @{thm expands_to_arctan_ms_pos_exp_pos} OF 
                        [e_pos_thm, trimmed_thm, get_basis_wf_thm basis, thm]
                  | (IsNeg, trimmed_thm) =>
                      @{thm expands_to_arctan_ms_pos_exp_neg} OF 
                        [e_pos_thm, trimmed_thm, get_basis_wf_thm basis, thm]
                  | _ => raise TERM ("Unexpected trim result during expansion of arctan", []))
              | (IsZero, _) => (
                  case try_lift_function ectxt (thm, basis) cont of
                    (SOME thm', _) => thm'
                  | _ =>
                      let
                        val _ = if get_verbose ectxt then 
                          writeln "Unsupported occurrence of arctan" else ()
                      in
                        raise TERM ("Unsupported occurrence of arctan", [])
                      end)
              | _ => raise TERM ("Unexpected trim result during expansion of arctan", [])
          end
fun expand_basic _ t SEmpty = raise TERM ("expand_basic", [t])
  | expand_basic thm t basis =
      if abconv (get_basis_head basis, t) then
        thm (get_basis_wf_thm basis) (mk_expansion_level_eq_thm (tl_basis basis))
      else
        @{thm expands_to_lift'} OF [get_basis_wf_thm basis, expand_basic thm t (tl_basis basis)]
  
fun expand_unary ectxt thm e basis =
      let
        val (thm', basis') = expand' ectxt e basis |> apfst (simplify_expansion ectxt)
      in
        (thm OF [get_basis_wf_thm basis', thm'], basis')
      end
and expand_binary ectxt thm (e1, e2) basis =
      let
        val (thm1, basis') = expand' ectxt e1 basis |> apfst (simplify_expansion ectxt)
        val (thm2, basis'') = expand' ectxt e2 basis' |> apfst (simplify_expansion ectxt)
        val thm1 = lift basis'' thm1 |> simplify_expansion ectxt
      in
        (thm OF [get_basis_wf_thm basis'', thm1, thm2], basis'')
      end
and trim_nz mode ectxt e basis =
      let
        val (thm, basis') = expand' ectxt e basis |> apfst (simplify_expansion ectxt)
        val (thm', nz, trimmed_thm) = trim_expansion true (SOME mode) ectxt (thm, basis')
      in
        case trimmed_thm of
          NONE => raise TERM ("expand: zero denominator", [get_expansion thm])
        | SOME trimmed_thm => (thm', basis', nz, trimmed_thm)
      end
and expand'' ectxt (ConstExpr c) basis = (const_expansion ectxt basis c, basis)
  | expand'' _ X basis = (lift basis @{thm expands_to_X}, basis)
  | expand'' ectxt (Uminus e) basis = expand_unary ectxt @{thm expands_to_uminus} e basis
  | expand'' ectxt (Add e12) basis = expand_binary ectxt @{thm expands_to_add} e12 basis
  | expand'' ectxt (Minus e12) basis = expand_binary ectxt @{thm expands_to_minus} e12 basis
  | expand'' ectxt (Mult e12) basis = expand_binary ectxt @{thm expands_to_mult} e12 basis
  | expand'' ectxt (Powr' (e, p)) basis = 
      let
        val (thm, basis') = expand' ectxt e basis |> apfst (simplify_expansion ectxt)
      in
        (powr_const_expansion ectxt (thm, p, basis'), basis')
      end
  | expand'' ectxt (Powr (e1, e2)) basis =
      let
        val (thm2, basis1) = expand' ectxt e2 basis |> apfst (simplify_expansion ectxt)
        val (thm1, basis2) = expand' ectxt e1 basis1 |> apfst (simplify_expansion ectxt)
      in
        powr_expansion ectxt (thm1, thm2, basis2)
      end
  | expand'' ectxt (Powr_Nat (e1, e2)) basis =
      let
        val (thm2, basis1) = expand' ectxt e2 basis |> apfst (simplify_expansion ectxt)
        val (thm1, basis2) = expand' ectxt e1 basis1 |> apfst (simplify_expansion ectxt)
      in
        powr_nat_expansion ectxt (thm1, thm2, basis2)
      end
  | expand'' ectxt (LnPowr (e1, e2)) basis =
      let 
        val (thm2, basis1) = expand' ectxt e2 basis |> apfst (simplify_expansion ectxt)
        val (thm1, basis2, _, trimmed_thm) = trim_nz Pos_Trim ectxt e1 basis1
        val (ln_thm, basis3) = ln_expansion ectxt trimmed_thm thm1 basis2
        val thm2' = lift basis3 thm2 |> simplify_expansion ectxt
        val mult_thm = @{thm expands_to_mult} OF [get_basis_wf_thm basis3, ln_thm, thm2']
        val thm = @{thm expands_to_ln_powr} OF 
          [trimmed_thm, get_basis_wf_thm basis2, thm1, mult_thm]
      in  
        (thm, basis3)
      end
  | expand'' ectxt (ExpLn e) basis =
      let
        val (thm, basis', _, trimmed_thm) = trim_nz Pos_Trim ectxt e basis
        val thm = @{thm expands_to_exp_ln} OF [trimmed_thm, get_basis_wf_thm basis', thm]
      in  
        (thm, basis')
      end
  | expand'' ectxt (Power (e, n)) basis =
      let
        val (thm, basis') = expand' ectxt e basis |> apfst (simplify_expansion ectxt)
      in
        (power_expansion ectxt (thm, n, basis'), basis')
      end
  | expand'' ectxt (Root (e, n)) basis =
      let
        val (thm, basis') = expand' ectxt e basis |> apfst (simplify_expansion ectxt)
      in
        (root_expansion ectxt (thm, n, basis'), basis')
      end
  | expand'' ectxt (Inverse e) basis = 
      (case trim_nz Simple_Trim ectxt e basis of
         (thm, basis', _, trimmed_thm) => 
           (@{thm expands_to_inverse} OF [trimmed_thm, get_basis_wf_thm basis', thm], basis'))
  | expand'' ectxt (Div (e1, e2)) basis =
      let
        val (thm1, basis') = expand' ectxt e1 basis
        val (thm2, basis'', _, trimmed_thm) = trim_nz Simple_Trim ectxt e2 basis'
        val thm1 = lift basis'' thm1
      in
        (@{thm expands_to_divide} OF [trimmed_thm, get_basis_wf_thm basis'', thm1, thm2], basis'')
      end
  | expand'' ectxt (Ln e) basis =
      let
        val (thm, basis', _, trimmed_thm) = trim_nz Pos_Trim ectxt e basis
      in
        ln_expansion ectxt trimmed_thm thm basis'
      end
  | expand'' ectxt (Exp e) basis =
      let
        val (thm, basis') = expand' ectxt e basis
      in
        exp_expansion ectxt thm basis'
      end
  | expand'' ectxt (Absolute e) basis =
      let
        val (thm, basis', nz, trimmed_thm) = trim_nz Sgn_Trim ectxt e basis
        val thm' =
          case nz of 
            IsPos => @{thm expands_to_abs_pos} 
          | IsNeg => @{thm expands_to_abs_neg}
          | _ => raise TERM ("Unexpected trim result during expansion of abs", [])
      in
        (thm' OF [trimmed_thm, get_basis_wf_thm basis', thm], basis')
      end
  | expand'' ectxt (Sgn e) basis =
      let
        val (thm, basis') = expand' ectxt e basis
      in
        (sgn_expansion ectxt (thm, basis'), basis')
      end
  | expand'' ectxt (Min (e1, e2)) basis = (
      case try_prove_ev_eq ectxt (apply2 expr_to_term (e1, e2)) of
        SOME eq_thm =>
          expand' ectxt e1 basis
          |> apfst (fn thm => @{thm expands_to_min_eq} OF [thm, eq_thm])
      | NONE =>
          let
            val (thm1, basis') = expand' ectxt e1 basis
            val (thm2, basis'') = expand' ectxt e2 basis'
            val thm1' = lift basis'' thm1
          in
            (min_expansion ectxt (thm1', thm2, basis''), basis'')
          end)
  | expand'' ectxt (Max (e1, e2)) basis = (
      case try_prove_ev_eq ectxt (apply2 expr_to_term (e1, e2)) of
        SOME eq_thm =>
          expand' ectxt e1 basis
          |> apfst (fn thm => @{thm expands_to_max_eq} OF [thm, eq_thm])
      | NONE =>
          let
            val (thm1, basis') = expand' ectxt e1 basis
            val (thm2, basis'') = expand' ectxt e2 basis'
            val thm1' = lift basis'' thm1
          in
            (max_expansion ectxt (thm1', thm2, basis''), basis'')
          end)
  | expand'' ectxt (Sin e) basis =
      let
        val (thm, basis', _, _) = trim_nz Simple_Trim ectxt e basis 
      in
        (sin_cos_expansion ectxt thm basis' |> fst, basis')
      end
  | expand'' ectxt (Cos e) basis =
      let
        val (thm, basis', _, _) = trim_nz Simple_Trim ectxt e basis 
      in
        (sin_cos_expansion ectxt thm basis' |> snd, basis')
      end
  | expand'' _ (Floor _) _ =
      raise TERM ("floor not supported.", [])
  | expand'' _ (Ceiling _) _ =
      raise TERM ("ceiling not supported.", [])
  | expand'' _ (Frac _) _ =
      raise TERM ("frac not supported.", [])
  | expand'' _ (NatMod _) _ =
      raise TERM ("mod not supported.", [])
  | expand'' ectxt (ArcTan e) basis =
      let
        
        val (thm, basis') = expand' ectxt e basis
      in
        (arctan_expansion ectxt basis' thm, basis')
      end
  | expand'' ectxt (Custom (name, t, args)) basis =
      let
        fun expand_args acc basis [] = (rev acc, basis)
          | expand_args acc basis (arg :: args) =
              case expand' ectxt arg basis of
                (thm, basis') => expand_args (thm :: acc) basis' args          
      in
        case expand_custom (get_ctxt ectxt) name of
          NONE => raise TERM ("Unsupported custom function: " ^ name, [t])
        | SOME e => e ectxt t (expand_args [] basis args)
      end
and expand' ectxt (e' as (Inverse e)) basis =
      let
        val t = expr_to_term e
        fun thm wf_thm len_thm =
          @{thm expands_to_basic_inverse} OF [wf_thm, len_thm]
      in
        if member abconv (get_basis_list basis) t then
          (expand_basic thm t basis, basis) |> apfst (check_expansion e')
        else
          expand'' ectxt e' basis |> apfst (check_expansion e')
      end
  | expand' ectxt (Div (e1, e2)) basis =
      let
        val (thm1, basis') = expand' ectxt e1 basis
        val t = expr_to_term e2
        fun thm wf_thm len_thm =
          @{thm expands_to_basic_inverse} OF [wf_thm, len_thm]
      in
        if member abconv (get_basis_list basis') t then
          (@{thm expands_to_div'} OF [get_basis_wf_thm basis', thm1, expand_basic thm t basis'], 
             basis')
        else
          let
            val (thm2, basis'', _, trimmed_thm) = trim_nz Simple_Trim ectxt e2 basis'
            val thm1 = lift basis'' thm1
          in
            (@{thm expands_to_divide} OF [trimmed_thm, get_basis_wf_thm basis'', thm1, thm2], 
               basis'')
          end
      end
  | expand' ectxt (e' as (Powr' (e, p))) basis =
      let
        val t = expr_to_term e
        val ctxt = get_ctxt ectxt
        fun thm wf_thm len_thm =
          (Drule.infer_instantiate' ctxt [NONE, NONE, SOME (Thm.cterm_of ctxt p)]
            @{thm expands_to_basic_powr}) OF [wf_thm, len_thm]
      in
        if member abconv (get_basis_list basis) t then
          (expand_basic thm t basis, basis) |> apfst (check_expansion e')
        else
          expand'' ectxt e' basis |> apfst (check_expansion e')
      end
  | expand' ectxt e basis =
      let
        val t = expr_to_term e
        fun thm wf_thm len_thm = @{thm expands_to_basic} OF [wf_thm, len_thm]
      in
        if member abconv (get_basis_list basis) t then
          (expand_basic thm t basis, basis) |> apfst (check_expansion e)
        else
          expand'' ectxt e basis |> apfst (check_expansion e)
      end
fun expand ectxt e basis = 
  expand' ectxt e basis
  |> apfst (simplify_expansion ectxt) 
  |> apfst (check_expansion e)
fun expand_term ectxt t basis =
  let
    val ctxt = get_ctxt ectxt
    val (e, eq_thm) = reify ctxt t
    val (thm,  basis) = expand ectxt e basis
  in
    (@{thm expands_to_meta_eq_cong'} OF [thm, eq_thm], basis)
  end
fun expand_terms ectxt ts basis =
  let
    val ctxt = get_ctxt ectxt
    val e_eq_thms = map (reify ctxt) ts
    fun step (e, eq_thm) (thms, basis) =
      let
        val (thm, basis) = expand' ectxt e basis
        val thm = @{thm expands_to_meta_eq_cong'} OF [simplify_expansion ectxt thm, eq_thm]
      in
        (thm :: thms, basis)
      end
    val (thms, basis) = fold step e_eq_thms ([], basis)
    fun lift thm = lift_expands_to_thm (mk_lifting (extract_basis_list thm) basis) thm
  in
    (map lift (rev thms), basis)
  end
datatype limit =
   Zero_Limit of bool option
 | Finite_Limit of term
 | Infinite_Limit of bool option
fun is_empty_expansion (Const (\<^const_name>‹MS›, _) $ Const (\<^const_name>‹MSLNil›, _) $ _) = true
  | is_empty_expansion _ = false
fun limit_of_expansion_aux ectxt basis thm =
  let
    val n = length (get_basis_list basis)
    val (thm, res, e_thms) =
      trim_expansion_while_greater false (SOME (replicate n \<^term>‹0::real›)) true
        (SOME Simple_Trim) ectxt (thm, basis)
    val trimmed_thm = case res of Trimmed (_, trimmed_thm) => trimmed_thm | _ => NONE
    val res = case res of Trimmed _ => GREATER | Aborted res => res
    val exp = get_expansion thm
    val _ = if res = GREATER andalso is_none trimmed_thm andalso not (is_empty_expansion exp) then
              raise TERM ("limit_of_expansion", [get_expansion thm]) else ()
    fun go thm _ _ [] = (
          case zeroness_oracle false (SOME Simple_Trim) ectxt (get_expansion thm) of
            (IsZero, _) => (Zero_Limit NONE, @{thm expands_to_real_imp_filterlim} OF [thm])
          | _ => (Finite_Limit \<^term>‹0::real›, @{thm expands_to_real_imp_filterlim} OF [thm]))
      | go thm _ basis ((IsNeg, neg_thm) :: _) = (Zero_Limit NONE,
          @{thm expands_to_neg_exponent_imp_filterlim} OF
            [thm, get_basis_wf_thm basis, neg_thm RS @{thm compare_reals_diff_sgnD(1)}])
      | go thm trimmed_thm basis ((IsPos, pos_thm) :: _) = (Infinite_Limit NONE,
          @{thm expands_to_pos_exponent_imp_filterlim} OF
            [thm, the trimmed_thm, get_basis_wf_thm basis,
             pos_thm RS @{thm compare_reals_diff_sgnD(3)}])
      | go thm trimmed_thm basis ((IsZero, zero_thm) :: e_thms) =
          let
             val thm' = thm RS @{thm expands_to_hd''}
             val trimmed_thm' = Option.map (fn thm => thm RS @{thm trimmed_hd}) trimmed_thm
             val (lim, lim_thm) = go thm' trimmed_thm' (tl_basis basis) e_thms
             val lim_lift_thm =
                case lim of
                  Infinite_Limit _ => @{thm expands_to_zero_exponent_imp_filterlim(1)}
                | _ => @{thm expands_to_zero_exponent_imp_filterlim(2)}
             val lim_thm' = 
               lim_lift_thm OF [thm, get_basis_wf_thm basis, 
                 zero_thm RS @{thm compare_reals_diff_sgnD(2)}, lim_thm]
          in
              (lim, lim_thm')
          end
      | go _ _ _ _ = raise Match
  in
    if is_empty_expansion exp then
      (Zero_Limit NONE, thm RS @{thm expands_to_MSLNil_imp_filterlim}, thm)
    else
      case go thm trimmed_thm basis e_thms of
        (lim, lim_thm) => (lim, lim_thm, thm)
  end
fun limit_of_expansion (sgn_zero, sgn_inf) ectxt (thm, basis) =
  let
    val (lim, lim_thm, thm) = limit_of_expansion_aux ectxt basis thm
  in
    case lim of
      Zero_Limit _ => (
        if sgn_zero then
          case trim_expansion false (SOME Sgn_Trim) ectxt (thm, basis) of
            (thm, IsPos, SOME pos_thm) => (Zero_Limit (SOME true),
              @{thm tendsto_imp_filterlim_at_right[OF _ expands_to_imp_eventually_pos]} OF
                [lim_thm, get_basis_wf_thm basis, thm, pos_thm])
          | (thm, IsNeg, SOME neg_thm) => (Zero_Limit (SOME false),
              @{thm tendsto_imp_filterlim_at_left[OF _ expands_to_imp_eventually_neg]} OF
                [lim_thm, get_basis_wf_thm basis, thm, neg_thm])
          | _ => (Zero_Limit NONE, lim_thm)
        else (Zero_Limit NONE, lim_thm))
    | Infinite_Limit _ => (
        if sgn_inf then
          case trim_expansion false (SOME Sgn_Trim) ectxt (thm, basis) of
            (thm, IsPos, SOME pos_thm) => (Infinite_Limit (SOME true),
              (@{thm filterlim_at_infinity_imp_filterlim_at_top[OF _ expands_to_imp_eventually_pos]} OF
                 [lim_thm, get_basis_wf_thm basis, thm, pos_thm]))
          | (thm, IsNeg, SOME neg_thm) => (Infinite_Limit (SOME false),
              @{thm filterlim_at_infinity_imp_filterlim_at_bot[OF _ expands_to_imp_eventually_neg]} OF
                [lim_thm, get_basis_wf_thm basis, thm, neg_thm])
          | _ => (Infinite_Limit NONE, lim_thm)
        else (Infinite_Limit NONE, lim_thm))
    | Finite_Limit c => (Finite_Limit c, lim_thm)
  end
fun compute_limit ectxt t =
  case expand_term ectxt t default_basis of
    (thm, basis) => limit_of_expansion (true, true) ectxt (thm, basis)
fun prove_at_infinity ectxt (thm, basis) =
  let
    fun err () = raise TERM ("prove_at_infinity", [get_expanded_fun thm])
    val (thm, _, SOME trimmed_thm) = trim_expansion true (SOME Simple_Trim) ectxt (thm, basis)
    fun go basis thm trimmed_thm =
      if fastype_of (get_expansion thm) = \<^typ>‹real› then
        err ()
      else
        case zeroness_oracle true (SOME Pos_Trim) ectxt (get_exponent (get_expansion thm)) of
          (IsPos, SOME pos_thm) =>
            @{thm expands_to_pos_exponent_imp_filterlim} OF
              [thm, trimmed_thm, get_basis_wf_thm basis, pos_thm]
        | (IsZero, SOME zero_thm) =>
            @{thm expands_to_zero_exponent_imp_filterlim(1)} OF
              [thm, get_basis_wf_thm basis, zero_thm,
                 go (tl_basis basis) (thm RS @{thm expands_to_hd''})
                   (trimmed_thm RS @{thm trimmed_hd})]
        | _ => err ()
  in
    go basis thm trimmed_thm
  end
fun prove_at_top_at_bot mode ectxt (thm, basis) =
  let
    val s = if mode = Pos_Trim then "prove_at_top" else "prove_at_bot"
    fun err () = raise TERM (s, [get_expanded_fun thm])
    val (thm, _, SOME trimmed_thm) = trim_expansion true (SOME mode) ectxt (thm, basis)
    val trimmed_thm' = trimmed_thm RS
      (if mode = Pos_Trim then @{thm trimmed_pos_imp_trimmed} else @{thm trimmed_neg_imp_trimmed})
    fun go basis thm trimmed_thm =
      if fastype_of (get_expansion thm) = \<^typ>‹real› then
        err ()
      else
        case zeroness_oracle true (SOME Pos_Trim) ectxt (get_exponent (get_expansion thm)) of
          (IsPos, SOME pos_thm) =>
            @{thm expands_to_pos_exponent_imp_filterlim} OF
              [thm, trimmed_thm, get_basis_wf_thm basis, pos_thm]
        | (IsZero, SOME zero_thm) =>
            @{thm expands_to_zero_exponent_imp_filterlim(1)} OF
              [thm, get_basis_wf_thm basis, zero_thm,
                 go (tl_basis basis) (thm RS @{thm expands_to_hd''})
                   (trimmed_thm RS @{thm trimmed_hd})]
        | _ => err ()
    val lim_thm = go basis thm trimmed_thm'
    val add_sign_thm =
      if mode = Pos_Trim then
        @{thm filterlim_at_infinity_imp_filterlim_at_top[OF _ expands_to_imp_eventually_pos]}
      else
        @{thm filterlim_at_infinity_imp_filterlim_at_bot[OF _ expands_to_imp_eventually_neg]}
  in
    add_sign_thm OF [lim_thm, get_basis_wf_thm basis, thm, trimmed_thm]
  end
val prove_at_top = prove_at_top_at_bot Pos_Trim
val prove_at_bot = prove_at_top_at_bot Neg_Trim
fun prove_at_aux mode ectxt (thm, basis) =
  let
    val (s, add_sign_thm) =
      case mode of
        Simple_Trim =>
          ("prove_at_0", @{thm Topological_Spaces.filterlim_atI[OF _ expands_to_imp_eventually_nz]})
      | Pos_Trim =>
          ("prove_at_right_0",
             @{thm tendsto_imp_filterlim_at_right[OF _ expands_to_imp_eventually_pos]})
      | Neg_Trim =>
          ("prove_at_left_0",
             @{thm tendsto_imp_filterlim_at_left[OF _ expands_to_imp_eventually_neg]})
    fun err () = raise TERM (s, [get_expanded_fun thm])
    val (thm, _, SOME trimmed_thm) = trim_expansion true (SOME mode) ectxt (thm, basis)
    fun go basis thm =
      if fastype_of (get_expansion thm) = \<^typ>‹real› then
        err ()
      else
        case zeroness_oracle true (SOME Neg_Trim) ectxt (get_exponent (get_expansion thm)) of
          (IsNeg, SOME neg_thm) =>
            @{thm expands_to_neg_exponent_imp_filterlim} OF
              [thm, get_basis_wf_thm basis, neg_thm]
        | (IsZero, SOME zero_thm) =>
            @{thm expands_to_zero_exponent_imp_filterlim(2)} OF
              [thm, get_basis_wf_thm basis, zero_thm,
                 go (tl_basis basis) (thm RS @{thm expands_to_hd''})]
        | _ => err ()
    val lim_thm = go basis thm
  in
    add_sign_thm OF [lim_thm, get_basis_wf_thm basis, thm, trimmed_thm]
  end
val prove_at_0 = prove_at_aux Simple_Trim
val prove_at_left_0 = prove_at_aux Neg_Trim
val prove_at_right_0 = prove_at_aux Pos_Trim
fun prove_nhds ectxt (thm, basis) =
  let
    fun simplify (a, b, c) = (a, simplify_expansion ectxt b, c)
    fun go thm basis =
      if fastype_of (get_expansion thm) = \<^typ>‹real› then
        @{thm expands_to_real_imp_filterlim} OF [thm]
      else
        case whnf_expansion ectxt thm |> simplify of
          (NONE, thm, _) => @{thm expands_to_MSLNil_imp_filterlim} OF [thm]
        | (SOME _, thm, _) => (
            case zeroness_oracle true (SOME Sgn_Trim) ectxt (get_exponent (get_expansion thm)) of
              (IsZero, SOME zero_thm) =>
                @{thm expands_to_zero_exponent_imp_filterlim(2)} OF
                  [thm, get_basis_wf_thm basis, zero_thm,
                    go (thm RS @{thm expands_to_hd''}) (tl_basis basis)]
            | (IsNeg, SOME neg_thm) =>
                @{thm expands_to_neg_exponent_imp_filterlim} OF
                  [thm, get_basis_wf_thm basis, neg_thm]
            | (IsPos, _) =>
                go (try_drop_leading_term ectxt thm) basis
            | _ => raise TERM ("Unexpected zeroness result in prove_nhds",
                     [get_exponent (get_expansion thm)]))
  in
    go thm basis
  end
fun prove_equivalent theta ectxt (thm1, thm2, basis) =
  let
    val ((thm1, _, SOME trimmed_thm1), (thm2, _, SOME trimmed_thm2)) =
      apply2 (trim_expansion true (SOME Simple_Trim) ectxt) ((thm1, basis), (thm2, basis))
    val pat = ConsPat (\<^const_name>‹Pair›, [ConsPat (\<^const_name>‹Lazy_Eval.cmp_result.EQ›, []), 
                ConsPat (\<^const_name>‹Pair›, [AnyPat ("_", 0), AnyPat ("_", 0)])])
    val (exp1, exp2) = apply2 get_expansion (thm1, thm2)
    val T = fastype_of exp1
    val t = mk_compare_expansions_const T $ exp1 $ exp2
    fun eq_thm conv = HOLogic.mk_obj_eq (conv (Thm.cterm_of (get_ctxt ectxt) t))
    val imp_thm =
      if theta then @{thm compare_expansions_EQ_imp_bigtheta}
      else @{thm compare_expansions_EQ_same}
  in
    case match ectxt pat t (SOME []) of
      (SOME _, t, conv) =>
        let
          val [_, c1, c2] = HOLogic.strip_tuple t
          val c12_thm = if theta then [] else [the (try_prove_real_eq true ectxt (c1, c2))]
        in
          imp_thm OF ([eq_thm conv, trimmed_thm1, trimmed_thm2, thm1, thm2, get_basis_wf_thm basis] 
            @ c12_thm)
        end
    | _ => raise TERM ("prove_equivalent", map get_expanded_fun [thm1, thm2])
  end
val prove_bigtheta = prove_equivalent true
val prove_asymp_equiv = prove_equivalent false
fun print_trimming_error s ectxt exp =
  let
    val c = get_coeff exp
    val t = if fastype_of c = \<^typ>‹real› then c else get_eval c
  in
    if #verbose (#ctxt ectxt) then
      let
        val ctxt = get_ctxt ectxt
        val p = Pretty.str "real_asymp failed to show zeroness of the following expression:"
        val p = Pretty.chunks [p, Pretty.indent 2 (Syntax.pretty_term ctxt t)]
        val _ = Pretty.writeln p
      in
        raise TERM (s, [t])
      end
    else
      raise TERM (s, [t])
  end
fun prove_smallo ectxt (thm1, thm2, basis) =
  let
    val (thm2, _, SOME trimmed_thm) = trim_expansion true (SOME Simple_Trim) ectxt (thm2, basis)
    val es = get_exponents (get_expansion thm2)
  in
    case trim_expansion_while_greater true (SOME es) false NONE ectxt (thm1, basis) of
      (thm1, Aborted LESS, thms) =>
        @{thm compare_expansions_LT} OF [prove_compare_expansions LESS (map snd thms),
          trimmed_thm, thm1, thm2, get_basis_wf_thm basis]
    | (thm1, Aborted _, _) =>
        print_trimming_error "prove_smallo" ectxt (get_expansion thm1)
    | (thm1, Trimmed _, _) =>
        print_trimming_error "prove_smallo" ectxt (get_expansion thm1)
  end
fun prove_bigo ectxt (thm1, thm2, basis) =
  let
    val (thm2, _, SOME trimmed_thm) = trim_expansion true (SOME Simple_Trim) ectxt (thm2, basis)
    val es = get_exponents (get_expansion thm2)
  in
    case trim_expansion_while_greater false (SOME es) false NONE ectxt (thm1, basis) of
      (thm1, Aborted LESS, thms) =>
        @{thm landau_o.small_imp_big[OF compare_expansions_LT]} OF
          [prove_compare_expansions LESS (map snd thms), trimmed_thm, thm1, thm2,
           get_basis_wf_thm basis]
    | (thm1, Aborted EQ, thms) =>
        @{thm compare_expansions_EQ_imp_bigo} OF [prove_compare_expansions EQ (map snd thms),
          trimmed_thm, thm1, thm2, get_basis_wf_thm basis]
    | (thm1, Trimmed _, _) =>
        print_trimming_error "prove_bigo" ectxt (get_expansion thm1)
  end
fun prove_asymptotic_relation_aux mode f ectxt (thm1, thm2, basis) = f (
  let
    val thm = @{thm expands_to_minus} OF [get_basis_wf_thm basis, thm1, thm2]
  in
    case ev_zeroness_oracle ectxt (get_expanded_fun thm) of
      SOME zero_thm => (EQUAL, zero_thm RS @{thm eventually_diff_zero_imp_eq})
    | _ => (
      case trim_expansion true (SOME mode) ectxt (thm, basis) of
        (thm, IsPos, SOME pos_thm) =>
          (GREATER, @{thm expands_to_imp_eventually_gt} OF [get_basis_wf_thm basis, thm, pos_thm])
      | (thm, IsNeg, SOME neg_thm) =>
          (LESS, @{thm expands_to_imp_eventually_lt} OF [get_basis_wf_thm basis, thm, neg_thm])
      | _ => raise TERM ("Unexpected zeroness result in prove_asymptotic_relation", []))
  end)
val prove_eventually_greater = prove_asymptotic_relation_aux Pos_Trim snd
val prove_eventually_less = prove_asymptotic_relation_aux Neg_Trim snd
val prove_asymptotic_relation = prove_asymptotic_relation_aux Sgn_Trim I
fun prove_eventually_nonzero ectxt (thm, basis) =
  case trim_expansion true (SOME Simple_Trim) ectxt (thm, basis) of
    (thm, _, SOME trimmed_thm) =>
      @{thm expands_to_imp_eventually_nz} OF [get_basis_wf_thm basis, thm, trimmed_thm]
  | _ => raise TERM ("prove_eventually_nonzero", [get_expanded_fun thm])
fun extract_terms (n, strict) ectxt basis t =
  let
    val bs = get_basis_list basis
    fun mk_constfun c = (Abs ("x", \<^typ>‹real›, c))
    val const_0 = mk_constfun \<^term>‹0 :: real›
    val const_1 = mk_constfun \<^term>‹1 :: real›
    fun uminus t = Term.betapply (\<^term>‹λ(f::real⇒real) x. -f x›, t)
    fun betapply2 a b c = Term.betapply (Term.betapply (a, b), c)
    fun mk_sum' [] acc = acc
      | mk_sum' ((t, sgn) :: ts) acc = mk_sum' ts (
          if sgn then
            betapply2 \<^term>‹%(f::real=>real) g x. f x - g x› acc t
          else
            betapply2 \<^term>‹%(f::real=>real) g x. f x + g x› acc t)
    fun mk_sum [] = const_0
      | mk_sum ((t, sgn) :: ts) = mk_sum' ts (if sgn then uminus t else t) 
    fun mk_mult a b =
      if a aconv const_0 then
        const_0
      else if b aconv const_0 then
        const_0
      else if a aconv \<^term>‹λ_::real. 1 :: real› then
        b
      else if b aconv \<^term>‹λ_::real. 1 :: real› then
        a
      else if a aconv \<^term>‹λ_::real. -1 :: real› then
        Term.betapply (\<^term>‹λ(f::real⇒real) x. -f x›, b)
      else if b aconv \<^term>‹λ_::real. -1 :: real› then
        Term.betapply (\<^term>‹λ(f::real⇒real) x. -f x›, a)
      else
        Abs ("x", \<^typ>‹real›, \<^term>‹(*) :: real => _› $
          (Term.betapply (a, Bound 0)) $ (Term.betapply (b, Bound 0)))
    fun mk_powr b e =
      if e = \<^term>‹0 :: real› then
        const_1
      else
        let
          val n = HOLogic.dest_number e |> snd
        in
          if n >= 0 then
            Term.betapply (Term.betapply (\<^term>‹%(b::real=>real) e x. b x ^ e›, b),
              HOLogic.mk_number \<^typ>‹nat› n)
          else
            Term.betapply (Term.betapply (\<^term>‹%(b::real=>real) e x. b x powr e›, b), e)
        end
      handle TERM _ =>
        Term.betapply (Term.betapply (\<^term>‹%(b::real=>real) e x. b x powr e›, b), e)
    fun mk_scale_elem b e acc =
      let
        val e = simplify_term ectxt e
      in
        if e = \<^term>‹0 :: real› then
          acc
        else if e = \<^term>‹1 :: real› then
          mk_mult acc b
        else
          mk_mult acc (mk_powr b e)
      end
    fun mk_scale_elems [] _ acc = acc
      | mk_scale_elems (b :: bs) (e :: es) acc =
          mk_scale_elems bs es (mk_scale_elem b e acc)
      | mk_scale_elems _ _ _ = raise Match
    fun mk_summand c es =
      let
        val es = mk_scale_elems bs es \<^term>‹λ_::real. 1 :: real›
      in
        case c of
          Const (\<^const_name>‹uminus›, _) $ c => ((c, true), es)
        | _ => ((c, false), es)
      end
    fun go _ _ _ acc 0 = (acc, 0)
      | go 0 es t acc n =
          let
            val c = simplify_term ectxt t
          in
            if strict andalso c = \<^term>‹0 :: real› then
              (acc, n)
            else
              (mk_summand c (rev es) :: acc, n - 1)
          end
      | go m es t acc n =
          case Lazy_Eval.whnf ectxt t |> fst of
            Const (\<^const_name>‹MS›, _) $ cs $ _ =>
              go' m es (simplify_term ectxt cs) acc n
          | _ => raise TERM("extract_terms", [t])
    and go' _ _ _ acc 0 = (acc, 0)
      | go' m es cs acc n =
          case Lazy_Eval.whnf ectxt cs |> fst of
            Const (\<^const_name>‹MSLNil›, _) => (acc, n)
          | Const (\<^const_name>‹MSLCons›, _) $ c $ cs => (
              case Lazy_Eval.whnf ectxt c |> fst |> HOLogic.dest_prod of
                (c, e) =>
                  case go (m - 1) (e :: es) c acc n of
                   (acc, n) => go' m es (simplify_term ectxt cs) acc n)
          | _ => raise TERM("extract_terms", [t])
    val (summands, remaining) = go (basis_size basis) [] t [] (n + 1)
    val (summands, error) =
      if remaining = 0 then (rev (tl summands), SOME (snd (hd summands))) else (rev summands, NONE)
    val summands = map (fn ((c, sgn), es) => (mk_mult (mk_constfun c) es, sgn)) summands
    val error = Option.map (fn err => Term.betapply (\<^term>‹λf::real⇒real. O(f)›, err)) error
    val expansion = mk_sum summands 
  in
    (expansion, error)
  end
end
structure Multiseries_Expansion_Basic : EXPANSION_INTERFACE =
struct
open Multiseries_Expansion;
type T = expansion_thm
val expand_term = expand_term
val expand_terms = expand_terms
val prove_nhds = prove_nhds
val prove_at_infinity = prove_at_infinity
val prove_at_top = prove_at_top
val prove_at_bot = prove_at_bot
val prove_at_0 = prove_at_0
val prove_at_right_0 = prove_at_right_0
val prove_at_left_0 = prove_at_left_0
val prove_eventually_nonzero = prove_eventually_nonzero
val prove_eventually_less = prove_eventually_less
val prove_eventually_greater = prove_eventually_greater
val prove_smallo = prove_smallo
val prove_bigo = prove_bigo
val prove_bigtheta = prove_bigtheta
val prove_asymp_equiv = prove_asymp_equiv
end