Theory Finite_Lattice
section ‹Finite Lattices›
theory Finite_Lattice
imports Product_Order
begin
subsection ‹Finite Complete Lattices›
text ‹A non-empty finite lattice is a complete lattice.
Since types are never empty in Isabelle/HOL,
a type of classes \<^class>‹finite› and \<^class>‹lattice›
should also have class \<^class>‹complete_lattice›.
A type class is defined
that extends classes \<^class>‹finite› and \<^class>‹lattice›
with the operators \<^const>‹bot›, \<^const>‹top›, \<^const>‹Inf›, and \<^const>‹Sup›,
along with assumptions that define these operators
in terms of the ones of classes \<^class>‹finite› and \<^class>‹lattice›.
The resulting class is a subclass of \<^class>‹complete_lattice›.›
class finite_lattice_complete = finite + lattice + bot + top + Inf + Sup +
assumes bot_def: "bot = Inf_fin UNIV"
assumes top_def: "top = Sup_fin UNIV"
assumes Inf_def: "Inf A = Finite_Set.fold inf top A"
assumes Sup_def: "Sup A = Finite_Set.fold sup bot A"
text ‹The definitional assumptions
on the operators \<^const>‹bot› and \<^const>‹top›
of class \<^class>‹finite_lattice_complete›
ensure that they yield bottom and top.›
lemma finite_lattice_complete_bot_least: "(bot::'a::finite_lattice_complete) ≤ x"
by (auto simp: bot_def intro: Inf_fin.coboundedI)
instance finite_lattice_complete ⊆ order_bot
by standard (auto simp: finite_lattice_complete_bot_least)
lemma finite_lattice_complete_top_greatest: "(top::'a::finite_lattice_complete) ≥ x"
by (auto simp: top_def Sup_fin.coboundedI)
instance finite_lattice_complete ⊆ order_top
by standard (auto simp: finite_lattice_complete_top_greatest)
instance finite_lattice_complete ⊆ bounded_lattice ..
text ‹The definitional assumptions
on the operators \<^const>‹Inf› and \<^const>‹Sup›
of class \<^class>‹finite_lattice_complete›
ensure that they yield infimum and supremum.›
lemma finite_lattice_complete_Inf_empty: "Inf {} = (top :: 'a::finite_lattice_complete)"
by (simp add: Inf_def)
lemma finite_lattice_complete_Sup_empty: "Sup {} = (bot :: 'a::finite_lattice_complete)"
by (simp add: Sup_def)
lemma finite_lattice_complete_Inf_insert:
fixes A :: "'a::finite_lattice_complete set"
shows "Inf (insert x A) = inf x (Inf A)"
proof -
interpret comp_fun_idem "inf :: 'a ⇒ _"
by (fact comp_fun_idem_inf)
show ?thesis by (simp add: Inf_def)
qed
lemma finite_lattice_complete_Sup_insert:
fixes A :: "'a::finite_lattice_complete set"
shows "Sup (insert x A) = sup x (Sup A)"
proof -
interpret comp_fun_idem "sup :: 'a ⇒ _"
by (fact comp_fun_idem_sup)
show ?thesis by (simp add: Sup_def)
qed
lemma finite_lattice_complete_Inf_lower:
"(x::'a::finite_lattice_complete) ∈ A ⟹ Inf A ≤ x"
using finite [of A]
by (induct A) (auto simp add: finite_lattice_complete_Inf_insert intro: le_infI2)
lemma finite_lattice_complete_Inf_greatest:
"∀x::'a::finite_lattice_complete ∈ A. z ≤ x ⟹ z ≤ Inf A"
using finite [of A]
by (induct A) (auto simp add: finite_lattice_complete_Inf_empty finite_lattice_complete_Inf_insert)
lemma finite_lattice_complete_Sup_upper:
"(x::'a::finite_lattice_complete) ∈ A ⟹ Sup A ≥ x"
using finite [of A]
by (induct A) (auto simp add: finite_lattice_complete_Sup_insert intro: le_supI2)
lemma finite_lattice_complete_Sup_least:
"∀x::'a::finite_lattice_complete ∈ A. z ≥ x ⟹ z ≥ Sup A"
using finite [of A]
by (induct A) (auto simp add: finite_lattice_complete_Sup_empty finite_lattice_complete_Sup_insert)
instance finite_lattice_complete ⊆ complete_lattice
proof
qed (auto simp:
finite_lattice_complete_Inf_lower
finite_lattice_complete_Inf_greatest
finite_lattice_complete_Sup_upper
finite_lattice_complete_Sup_least
finite_lattice_complete_Inf_empty
finite_lattice_complete_Sup_empty)
text ‹The product of two finite lattices is already a finite lattice.›
lemma finite_bot_prod:
"(bot :: ('a::finite_lattice_complete × 'b::finite_lattice_complete)) =
Inf_fin UNIV"
by (metis Inf_fin.coboundedI UNIV_I bot.extremum_uniqueI finite_UNIV)
lemma finite_top_prod:
"(top :: ('a::finite_lattice_complete × 'b::finite_lattice_complete)) =
Sup_fin UNIV"
by (metis Sup_fin.coboundedI UNIV_I top.extremum_uniqueI finite_UNIV)
lemma finite_Inf_prod:
"Inf(A :: ('a::finite_lattice_complete × 'b::finite_lattice_complete) set) =
Finite_Set.fold inf top A"
by (metis Inf_fold_inf finite)
lemma finite_Sup_prod:
"Sup (A :: ('a::finite_lattice_complete × 'b::finite_lattice_complete) set) =
Finite_Set.fold sup bot A"
by (metis Sup_fold_sup finite)
instance prod :: (finite_lattice_complete, finite_lattice_complete) finite_lattice_complete
by standard (auto simp: finite_bot_prod finite_top_prod finite_Inf_prod finite_Sup_prod)
text ‹Functions with a finite domain and with a finite lattice as codomain
already form a finite lattice.›
lemma finite_bot_fun: "(bot :: ('a::finite ⇒ 'b::finite_lattice_complete)) = Inf_fin UNIV"
by (metis Inf_UNIV Inf_fin_Inf empty_not_UNIV finite)
lemma finite_top_fun: "(top :: ('a::finite ⇒ 'b::finite_lattice_complete)) = Sup_fin UNIV"
by (metis Sup_UNIV Sup_fin_Sup empty_not_UNIV finite)
lemma finite_Inf_fun:
"Inf (A::('a::finite ⇒ 'b::finite_lattice_complete) set) =
Finite_Set.fold inf top A"
by (metis Inf_fold_inf finite)
lemma finite_Sup_fun:
"Sup (A::('a::finite ⇒ 'b::finite_lattice_complete) set) =
Finite_Set.fold sup bot A"
by (metis Sup_fold_sup finite)
instance "fun" :: (finite, finite_lattice_complete) finite_lattice_complete
by standard (auto simp: finite_bot_fun finite_top_fun finite_Inf_fun finite_Sup_fun)
subsection ‹Finite Distributive Lattices›
text ‹A finite distributive lattice is a complete lattice
whose \<^const>‹inf› and \<^const>‹sup› operators
distribute over \<^const>‹Sup› and \<^const>‹Inf›.›
class finite_distrib_lattice_complete =
distrib_lattice + finite_lattice_complete
lemma finite_distrib_lattice_complete_sup_Inf:
"sup (x::'a::finite_distrib_lattice_complete) (Inf A) = (INF y∈A. sup x y)"
using finite
by (induct A rule: finite_induct) (simp_all add: sup_inf_distrib1)
lemma finite_distrib_lattice_complete_inf_Sup:
"inf (x::'a::finite_distrib_lattice_complete) (Sup A) = (SUP y∈A. inf x y)"
using finite [of A] by induct (simp_all add: inf_sup_distrib1)
context finite_distrib_lattice_complete
begin
subclass finite_distrib_lattice
proof -
show "class.finite_distrib_lattice Inf Sup inf (≤) (<) sup bot top"
proof
show "bot = Inf UNIV"
unfolding bot_def top_def Inf_def
using Inf_fin.eq_fold Inf_fin.insert inf.absorb2 by force
next
show "top = Sup UNIV"
unfolding bot_def top_def Sup_def
using Sup_fin.eq_fold Sup_fin.insert by force
next
show "Inf {} = Sup UNIV"
unfolding Inf_def Sup_def bot_def top_def
using Sup_fin.eq_fold Sup_fin.insert by force
next
show "Sup {} = Inf UNIV"
unfolding Inf_def Sup_def bot_def top_def
using Inf_fin.eq_fold Inf_fin.insert inf.absorb2 by force
next
interpret comp_fun_idem_inf: comp_fun_idem inf
by (fact comp_fun_idem_inf)
show "Inf (insert a A) = inf a (Inf A)" for a A
using comp_fun_idem_inf.fold_insert_idem Inf_def finite by simp
next
interpret comp_fun_idem_sup: comp_fun_idem sup
by (fact comp_fun_idem_sup)
show "Sup (insert a A) = sup a (Sup A)" for a A
using comp_fun_idem_sup.fold_insert_idem Sup_def finite by simp
qed
qed
end
instance finite_distrib_lattice_complete ⊆ complete_distrib_lattice ..
text ‹The product of two finite distributive lattices
is already a finite distributive lattice.›
instance prod ::
(finite_distrib_lattice_complete, finite_distrib_lattice_complete)
finite_distrib_lattice_complete
..
text ‹Functions with a finite domain
and with a finite distributive lattice as codomain
already form a finite distributive lattice.›
instance "fun" ::
(finite, finite_distrib_lattice_complete) finite_distrib_lattice_complete
..
subsection ‹Linear Orders›
text ‹A linear order is a distributive lattice.
A type class is defined
that extends class \<^class>‹linorder›
with the operators \<^const>‹inf› and \<^const>‹sup›,
along with assumptions that define these operators
in terms of the ones of class \<^class>‹linorder›.
The resulting class is a subclass of \<^class>‹distrib_lattice›.›
class linorder_lattice = linorder + inf + sup +
assumes inf_def: "inf x y = (if x ≤ y then x else y)"
assumes sup_def: "sup x y = (if x ≥ y then x else y)"
text ‹The definitional assumptions
on the operators \<^const>‹inf› and \<^const>‹sup›
of class \<^class>‹linorder_lattice›
ensure that they yield infimum and supremum
and that they distribute over each other.›
lemma linorder_lattice_inf_le1: "inf (x::'a::linorder_lattice) y ≤ x"
unfolding inf_def by (metis (full_types) linorder_linear)
lemma linorder_lattice_inf_le2: "inf (x::'a::linorder_lattice) y ≤ y"
unfolding inf_def by (metis (full_types) linorder_linear)
lemma linorder_lattice_inf_greatest:
"(x::'a::linorder_lattice) ≤ y ⟹ x ≤ z ⟹ x ≤ inf y z"
unfolding inf_def by (metis (full_types))
lemma linorder_lattice_sup_ge1: "sup (x::'a::linorder_lattice) y ≥ x"
unfolding sup_def by (metis (full_types) linorder_linear)
lemma linorder_lattice_sup_ge2: "sup (x::'a::linorder_lattice) y ≥ y"
unfolding sup_def by (metis (full_types) linorder_linear)
lemma linorder_lattice_sup_least:
"(x::'a::linorder_lattice) ≥ y ⟹ x ≥ z ⟹ x ≥ sup y z"
by (auto simp: sup_def)
lemma linorder_lattice_sup_inf_distrib1:
"sup (x::'a::linorder_lattice) (inf y z) = inf (sup x y) (sup x z)"
by (auto simp: inf_def sup_def)
instance linorder_lattice ⊆ distrib_lattice
proof
qed (auto simp:
linorder_lattice_inf_le1
linorder_lattice_inf_le2
linorder_lattice_inf_greatest
linorder_lattice_sup_ge1
linorder_lattice_sup_ge2
linorder_lattice_sup_least
linorder_lattice_sup_inf_distrib1)
subsection ‹Finite Linear Orders›
text ‹A (non-empty) finite linear order is a complete linear order.›
class finite_linorder_complete = linorder_lattice + finite_lattice_complete
instance finite_linorder_complete ⊆ complete_linorder ..
text ‹A (non-empty) finite linear order is a complete lattice
whose \<^const>‹inf› and \<^const>‹sup› operators
distribute over \<^const>‹Sup› and \<^const>‹Inf›.›
instance finite_linorder_complete ⊆ finite_distrib_lattice_complete ..
end