Theory Zassenhaus

(*  Title:      HOL/Algebra/Zassenhaus.thy
    Author:     Martin Baillon
*)

section ‹The Zassenhaus Lemma›

theory Zassenhaus
  imports Coset Group_Action
begin

text ‹Proves the second isomorphism theorem and the Zassenhaus lemma.›

subsection ‹Lemmas about normalizer›

lemma (in group) subgroup_in_normalizer:
  assumes "subgroup H G"
  shows "normal H (Gcarrier:= (normalizer G H))"
proof(intro group.normal_invI)
  show "Group.group (Gcarrier := normalizer G H)"
    by (simp add: assms group.normalizer_imp_subgroup is_group subgroup_imp_group subgroup.subset)
  have K:"H  (normalizer G H)" unfolding normalizer_def
  proof
    fix x assume xH: "x  H"
    from xH have xG : "x  carrier G" using subgroup.subset assms by auto
    have "x <# H = H"
      by (metis x  H assms group.lcos_mult_one is_group
         l_repr_independence one_closed subgroup.subset)
    moreover have "H #> inv x = H"
      by (simp add: xH assms is_group subgroup.rcos_const subgroup.m_inv_closed)
    ultimately have "x <# H #> (inv x) = H" by simp
    thus " x  stabilizer G (λg. λH{H. H  carrier G}. g <# H #> inv g) H"
      using assms xG subgroup.subset unfolding stabilizer_def by auto
  qed
  thus "subgroup H (Gcarrier:= (normalizer G H))"
    using subgroup_incl normalizer_imp_subgroup assms by (simp add: subgroup.subset)
  show  " x h. x  carrier (Gcarrier := normalizer G H)  h  H 
             x Gcarrier := normalizer G Hh
               Gcarrier := normalizer G HinvGcarrier := normalizer G Hx  H"
    proof-
    fix x h assume xnorm : "x  carrier (Gcarrier := normalizer G H)" and hH : "h  H"
    have xnormalizer:"x  normalizer G H" using xnorm by simp
    moreover have hnormalizer:"h  normalizer G H" using hH K by auto
    ultimately have "x Gcarrier := normalizer G Hh = x  h" by simp
    moreover have " invGcarrier := normalizer G Hx =  inv x"
      using xnormalizer
      by (simp add: assms normalizer_imp_subgroup subgroup.subset m_inv_consistent)
    ultimately  have xhxegal: "x Gcarrier := normalizer G Hh
                Gcarrier := normalizer G HinvGcarrier := normalizer G Hx
                  = x h  inv x"
      using  hnormalizer by simp
    have  "x h  inv x  (x <# H #> inv x)"
      unfolding l_coset_def r_coset_def using hH  by auto
    moreover have "x <# H #> inv x = H"
      using xnormalizer assms subgroup.subset[OF assms]
      unfolding normalizer_def stabilizer_def by auto
    ultimately have "x h  inv x  H" by simp
    thus  " x Gcarrier := normalizer G Hh
               Gcarrier := normalizer G HinvGcarrier := normalizer G Hx  H"
      using xhxegal hH xnorm by simp
  qed
qed


lemma (in group) normal_imp_subgroup_normalizer:
  assumes "subgroup H G"
    and "N  (Gcarrier := H)"
  shows "subgroup H (Gcarrier := normalizer G N)"
proof-
  have N_carrierG : "N  carrier(G)"
    using assms normal_imp_subgroup subgroup.subset
    using incl_subgroup by blast
  {have "H  normalizer G N" unfolding normalizer_def stabilizer_def
    proof
      fix x assume xH : "x  H"
      hence xcarrierG : "x  carrier(G)" using assms subgroup.subset  by auto
      have "   N #> x = x <# N" using assms xH
        unfolding r_coset_def l_coset_def normal_def normal_axioms_def subgroup_imp_group by auto
      hence "x <# N #> inv x =(N #> x) #> inv x"
        by simp
      also have "... = N #> 𝟭"
        using  assms r_inv xcarrierG coset_mult_assoc[OF N_carrierG] by simp
      finally have "x <# N #> inv x = N" by (simp add: N_carrierG)
      thus "x  {g  carrier G. (λH{H. H  carrier G}. g <# H #> inv g) N = N}"
        using xcarrierG by (simp add : N_carrierG)
    qed}
  thus "subgroup H (Gcarrier := normalizer G N)"
    using subgroup_incl[OF assms(1) normalizer_imp_subgroup]
      assms normal_imp_subgroup subgroup.subset
    by (metis  group.incl_subgroup is_group)
qed


subsection ‹Second Isomorphism Theorem›

lemma (in group) mult_norm_subgroup:
  assumes "normal N G"
    and "subgroup H G"
  shows "subgroup (N<#>H) G" unfolding subgroup_def
proof-
  have  A :"N <#> H  carrier G"
    using assms  setmult_subset_G by (simp add: normal_imp_subgroup subgroup.subset)

  have B :" x y. x  (N <#> H); y  (N <#> H)  (x  y)  (N<#>H)"
  proof-
    fix x y assume B1a: "x  (N <#> H)"  and B1b: "y  (N <#> H)"
    obtain n1 h1 where B2:"n1  N  h1  H  n1h1 = x"
      using set_mult_def B1a by (metis (no_types, lifting) UN_E singletonD)
    obtain n2 h2 where B3:"n2  N  h2  H  n2h2 = y"
      using set_mult_def B1b by (metis (no_types, lifting) UN_E singletonD)
    have "N #> h1 = h1 <# N"
      using normalI B2 assms normal.coset_eq subgroup.subset by blast
    hence "h1n2  N #> h1"
      using B2 B3 assms l_coset_def by fastforce
    from this obtain y2 where y2_def:"y2  N" and y2_prop:"y2h1 = h1n2"
      using singletonD by (metis (no_types, lifting) UN_E r_coset_def)
    have "a. a  N  a  carrier G"  "a. a  H  a  carrier G"
      by (meson assms normal_def subgroup.mem_carrier)+
    then have "xy =  n1  y2  h1  h2" using y2_def B2 B3
      by (metis (no_types) B2 B3 a. a  N  a  carrier G m_assoc m_closed y2_def y2_prop)
    moreover have B4 :"n1  y2 N"
      using B2 y2_def assms normal_imp_subgroup by (metis subgroup_def)
    moreover have "h1  h2 H" using B2 B3 assms by (simp add: subgroup.m_closed)
    hence "(n1  y2)  (h1  h2) (N<#>H) "
      using B4  unfolding set_mult_def by auto
    hence "n1  y2  h1  h2 (N<#>H)"
      using m_assoc B2 B3 assms  normal_imp_subgroup by (metis B4 subgroup.mem_carrier)
    ultimately show  "x  y  N <#> H" by auto
  qed
  have C :" x. x(N<#>H)   (inv x)(N<#>H)"

  proof-
    fix x assume C1 : "x  (N<#>H)"
    obtain n h where C2:"n  N  h  H  nh = x"
      using set_mult_def C1 by (metis (no_types, lifting) UN_E singletonD)
    have C3 :"inv(nh) = inv(h)inv(n)"
      by (meson C2  assms inv_mult_group normal_imp_subgroup subgroup.mem_carrier)
    hence "... h  N"
      using assms C2
      by (meson normal.inv_op_closed1 normal_def subgroup.m_inv_closed subgroup.mem_carrier)
    hence  C4:"(inv h  inv n  h)  inv h  (N<#>H)"
      using   C2 assms subgroup.m_inv_closed[of H G h] unfolding set_mult_def by auto
    have "inv h  inv n  h  inv h = inv h  inv n"
      using  subgroup.subset[OF assms(2)]
      by (metis A C1 C2 C3 inv_closed inv_solve_right m_closed subsetCE)
    thus "inv(x)N<#>H" using C4 C2 C3 by simp
  qed

  have D : "𝟭  N <#> H"
  proof-
    have D1 : "𝟭  N"
      using assms by (simp add: normal_def subgroup.one_closed)
     have D2 :"𝟭  H"
      using assms by (simp add: subgroup.one_closed)
    thus "𝟭  (N <#> H)"
      using set_mult_def D1 assms by fastforce
  qed
  thus "(N <#> H  carrier G  (x y. x  N <#> H  y  N <#> H  x  y  N <#> H)) 
    𝟭  N <#> H  (x. x  N <#> H  inv x  N <#> H)" using A B C D assms by blast
qed


lemma (in group) mult_norm_sub_in_sub:
  assumes "normal N (Gcarrier:=K)"
  assumes "subgroup H (Gcarrier:=K)"
  assumes "subgroup K G"
  shows  "subgroup (N<#>H) (Gcarrier:=K)"
proof-
  have Hyp:"subgroup (N <#>Gcarrier := KH) (Gcarrier := K)"
    using group.mult_norm_subgroup[where ?G = "Gcarrier := K"] assms subgroup_imp_group by auto
  have "H  carrier(Gcarrier := K)" using assms subgroup.subset by blast
  also have "...  K" by simp
  finally have Incl1:"H  K" by simp
  have "N  carrier(Gcarrier := K)" using assms normal_imp_subgroup subgroup.subset by blast
  also have "...  K" by simp
  finally have Incl2:"N  K" by simp
  have "(N <#>Gcarrier := KH) = (N <#> H)"
    using set_mult_consistent by simp
  thus "subgroup (N<#>H) (Gcarrier:=K)" using Hyp by auto
qed


lemma (in group) subgroup_of_normal_set_mult:
  assumes "normal N G"
and "subgroup H G"
shows "subgroup H (Gcarrier := N <#> H)"
proof-
  have "𝟭  N" using normal_imp_subgroup assms(1) subgroup_def by blast
  hence "𝟭 <# H  N <#> H" unfolding set_mult_def l_coset_def by blast
  hence H_incl : "H  N <#> H"
    by (metis assms(2) lcos_mult_one subgroup_def)
  show "subgroup H (Gcarrier := N <#> H)"
  using subgroup_incl[OF assms(2) mult_norm_subgroup[OF assms(1) assms(2)] H_incl] .
qed


lemma (in group) normal_in_normal_set_mult:
  assumes "normal N G"
and "subgroup H G"
shows "normal N (Gcarrier := N <#> H)"
proof-
  have "𝟭  H" using  assms(2) subgroup_def by blast
  hence "N #> 𝟭   N <#> H" unfolding set_mult_def r_coset_def by blast
  hence N_incl : "N  N <#> H"
    by (metis assms(1) normal_imp_subgroup coset_mult_one subgroup_def)
  thus "normal N (Gcarrier := N <#> H)"
    using normal_Int_subgroup[OF mult_norm_subgroup[OF assms] assms(1)]
    by (simp add : inf_absorb1)
qed


proposition (in group) weak_snd_iso_thme:
  assumes "subgroup  H G"
    and "NG"
  shows "(Gcarrier := N<#>H Mod N  Gcarrier:=H Mod (NH))"
proof-
  define f where "f =  (#>) N"
  have GroupNH : "Group.group (Gcarrier := N<#>H)"
    using subgroup_imp_group assms mult_norm_subgroup by simp
  have  HcarrierNH :"H  carrier(Gcarrier := N<#>H)"
    using assms subgroup_of_normal_set_mult subgroup.subset by blast
  hence HNH :"H  N<#>H" by simp
  have op_hom : "f  hom (Gcarrier := H) (Gcarrier := N <#> H Mod N)" unfolding hom_def
  proof
    have "x . x  carrier (Gcarrier :=H) 
       (#>Gcarrier := N <#> H) N x   carrier (Gcarrier := N <#> H Mod N)"
    proof-
      fix x assume  "x  carrier (Gcarrier :=H)"
      hence xH : "x  H" by simp
      hence "(#>Gcarrier := N <#> H) N x  rcosetsGcarrier := N <#> HN"
        using HcarrierNH RCOSETS_def[where ?G = "Gcarrier := N <#> H"] by blast
      thus "(#>Gcarrier := N <#> H) N x   carrier (Gcarrier := N <#> H Mod N)"
        unfolding FactGroup_def by simp
    qed
    hence "(#>Gcarrier := N <#> H) N  carrier (Gcarrier :=H) 
            carrier (Gcarrier := N <#> H Mod N)" by auto
    hence "f  carrier (Gcarrier :=H)  carrier (Gcarrier := N <#> H Mod N)"
      unfolding r_coset_def f_def  by simp
    moreover have "x y. xcarrier (Gcarrier := H)  ycarrier (Gcarrier := H) 
                  f (x Gcarrier := Hy) =  f(x) Gcarrier := N <#> H Mod Nf(y)"
    proof-
      fix x y assume "xcarrier (Gcarrier := H)" "ycarrier (Gcarrier := H)"
      hence xHyH :"x  H" "y  H" by auto
      have Nxeq :"N #>Gcarrier := N<#>Hx = N #>x" unfolding r_coset_def by simp
      have Nyeq :"N #>Gcarrier := N<#>Hy = N #>y" unfolding r_coset_def by simp

      have "x Gcarrier := Hy =x Gcarrier := N<#>Hy" by simp
      hence "N #>Gcarrier := N<#>Hx Gcarrier := Hy
             = N #>Gcarrier := N<#>Hx Gcarrier := N<#>Hy" by simp
      also have "... = (N #>Gcarrier := N<#>Hx) <#>Gcarrier := N<#>H(N #>Gcarrier := N<#>Hy)"
        using normal.rcos_sum[OF normal_in_normal_set_mult[OF assms(2) assms(1)], of x y]
             xHyH assms HcarrierNH by auto
      finally show "f (x Gcarrier := Hy) =  f(x) Gcarrier := N <#> H Mod Nf(y)"
        unfolding  FactGroup_def r_coset_def f_def  using Nxeq Nyeq  by auto
    qed
    hence "(xcarrier (Gcarrier := H). ycarrier (Gcarrier := H).
           f (x Gcarrier := Hy) =  f(x) Gcarrier := N <#> H Mod Nf(y))" by blast
    ultimately show  " f  carrier (Gcarrier := H)  carrier (Gcarrier := N <#> H Mod N) 
    (xcarrier (Gcarrier := H). ycarrier (Gcarrier := H).
     f (x Gcarrier := Hy) =  f(x) Gcarrier := N <#> H Mod Nf(y))"
      by auto
  qed
  hence homomorphism : "group_hom (Gcarrier := H) (Gcarrier := N <#> H Mod N) f"
    unfolding group_hom_def group_hom_axioms_def using subgroup_imp_group[OF assms(1)]
             normal.factorgroup_is_group[OF normal_in_normal_set_mult[OF assms(2) assms(1)]] by auto
  moreover have im_f :  "(f  ` carrier(Gcarrier:=H)) = carrier(Gcarrier := N <#> H Mod N)"
  proof
    show  "f ` carrier (Gcarrier := H)  carrier (Gcarrier := N <#> H Mod N)"
      using op_hom unfolding hom_def using funcset_image by blast
  next
    show "carrier (Gcarrier := N <#> H Mod N)  f ` carrier (Gcarrier := H)"
    proof
      fix x assume p : " x  carrier (Gcarrier := N <#> H Mod N)"
      hence "x  {y. xcarrier (Gcarrier := N <#> H). y = {N #>Gcarrier := N <#> Hx}}"
        unfolding FactGroup_def RCOSETS_def by auto
      hence hyp :"y. hcarrier (Gcarrier := N <#> H). y = {N #>Gcarrier := N <#> Hh}  x  y"
        using Union_iff by blast
      from hyp obtain nh where nhNH:"nh carrier (Gcarrier := N <#> H)"
                          and "x  {N #>Gcarrier := N <#> Hnh}"
        by blast
      hence K: "x = (#>Gcarrier := N <#> H) N nh" by simp
      have "nh  N <#> H" using nhNH by simp
      from this obtain n h where nN : "n  N" and hH : " h  H" and nhnh: "n  h = nh"
        unfolding set_mult_def by blast
      have  "x = (#>Gcarrier := N <#> H) N (n  h)" using K nhnh by simp
      hence  "x = (#>) N (n  h)" using K nhnh unfolding r_coset_def by auto
      also have "... = (N #> n) #>h"
        using coset_mult_assoc hH nN assms subgroup.subset normal_imp_subgroup
        by (metis subgroup.mem_carrier)
      finally have "x = (#>) N h"
        using coset_join2[of n N] nN assms by (simp add: normal_imp_subgroup subgroup.mem_carrier)
      thus "x  f ` carrier (Gcarrier := H)" using hH unfolding f_def by simp
    qed
  qed
  moreover have ker_f :"kernel (Gcarrier := H) (Gcarrier := N<#>H Mod N) f  = NH"
    unfolding kernel_def f_def
    proof-
      have "{x  carrier (Gcarrier := H). N #> x = 𝟭Gcarrier := N <#> H Mod N} =
            {x  carrier (Gcarrier := H). N #> x = N}" unfolding FactGroup_def by simp
      also have "... = {x  carrier (Gcarrier := H). x  N}"
        using coset_join1
        by (metis (no_types, lifting) assms group.subgroup_self incl_subgroup is_group
          normal_imp_subgroup subgroup.mem_carrier subgroup.rcos_const subgroup_imp_group)
      also have "... =N  (carrier(Gcarrier := H))" by auto
      finally show "{x  carrier (Gcarrier := H). N#>x = 𝟭Gcarrier := N <#> H Mod N} = N  H"
        by simp
    qed
    ultimately have "(Gcarrier := H Mod N  H)  (Gcarrier := N <#> H Mod N)"
      using group_hom.FactGroup_iso[OF homomorphism im_f] by auto
    hence "Gcarrier := N <#> H Mod N  Gcarrier := H Mod N  H"
      by (simp add: group.iso_sym assms normal.factorgroup_is_group normal_Int_subgroup)
    thus "Gcarrier := N <#> H Mod N  Gcarrier := H Mod N  H" by auto
qed


theorem (in group) snd_iso_thme:
  assumes "subgroup H G"
    and "subgroup N G"
    and "subgroup H (Gcarrier:= (normalizer G N))"
  shows "(Gcarrier:= N<#>H Mod N)   (Gcarrier:= H Mod (HN))"
proof-
  have "Gcarrier := normalizer G N, carrier := H
       = Gcarrier := H"  by simp
  hence "Gcarrier := normalizer G N, carrier := H Mod N  H =
         Gcarrier := H Mod N  H" by auto
  moreover have "Gcarrier := normalizer G N,
                    carrier := N <#>Gcarrier := normalizer G NH =
                Gcarrier := N <#>Gcarrier := normalizer G NH" by simp
  hence "Gcarrier := normalizer G N,
          carrier := N <#>Gcarrier := normalizer G NH Mod N =
          Gcarrier := N <#>Gcarrier := normalizer G NH Mod N" by auto
  hence "Gcarrier := normalizer G N,
          carrier := N <#>Gcarrier := normalizer G NH Mod N  
         Gcarrier := normalizer G N, carrier := H Mod N  H =
          (Gcarrier:= N<#>H Mod N)  
         Gcarrier := normalizer G N, carrier := H Mod N  H"
    using subgroup.subset[OF assms(3)]
          subgroup.subset[OF normal_imp_subgroup[OF subgroup_in_normalizer[OF assms(2)]]]
    by simp
  ultimately have "Gcarrier := normalizer G N,
                    carrier := N <#>Gcarrier := normalizer G NH Mod N  
                  Gcarrier := normalizer G N, carrier := H Mod N  H =
                 (Gcarrier:= N<#>H Mod N)    Gcarrier := H Mod N  H" by auto
  moreover have "Gcarrier := normalizer G N,
                    carrier := N <#>Gcarrier := normalizer G NH Mod N  
                  Gcarrier := normalizer G N, carrier := H Mod N  H"
    using group.weak_snd_iso_thme[OF subgroup_imp_group[OF normalizer_imp_subgroup[OF
          subgroup.subset[OF assms(2)]]] assms(3) subgroup_in_normalizer[OF assms(2)]]
    by simp
  moreover have "HN = NH" using assms  by auto
  ultimately show "(Gcarrier:= N<#>H Mod N)    Gcarrier := H Mod H  N" by auto
qed


corollary (in group) snd_iso_thme_recip :
  assumes "subgroup H G"
    and "subgroup N G"
    and "subgroup H (Gcarrier:= (normalizer G N))"
  shows "(Gcarrier:= H<#>N Mod N)   (Gcarrier:= H Mod (HN))"
  by (metis assms commut_normal_subgroup group.subgroup_in_normalizer is_group subgroup.subset
      normalizer_imp_subgroup snd_iso_thme)


subsection‹The Zassenhaus Lemma›


lemma (in group) distinc:
  assumes "subgroup  H G"
    and "H1Gcarrier := H"
    and  "subgroup K G"
    and "K1Gcarrier:=K"
  shows "subgroup (HK) (Gcarrier:=(normalizer G (H1<#>(HK1))) )"
proof (intro subgroup_incl[OF subgroups_Inter_pair[OF assms(1) assms(3)]])
  show "subgroup (normalizer G (H1 <#> H  K1)) G"
    using normalizer_imp_subgroup assms normal_imp_subgroup subgroup.subset
    by (metis group.incl_subgroup is_group setmult_subset_G subgroups_Inter_pair)
next
  show "H  K  normalizer G (H1 <#> H  K1)" unfolding normalizer_def stabilizer_def
  proof
    fix x assume xHK : "x  H  K"
    hence xG : "{x}  carrier G" "{inv x}  carrier G"
      using subgroup.subset assms inv_closed xHK by auto
    have allG : "H  carrier G" "K  carrier G" "H1  carrier G"  "K1  carrier G"
      using assms subgroup.subset normal_imp_subgroup incl_subgroup apply blast+ .
    have HK1: "H  K1  carrier G"
      by (simp add: allG(1) le_infI1)
    have HK1_normal: "HK1  (Gcarrier :=  H  K)" using normal_inter[OF assms(3)assms(1)assms(4)]
      by (simp add : inf_commute)
    have "H  K  normalizer G (H  K1)"
      using subgroup.subset[OF normal_imp_subgroup_normalizer[OF subgroups_Inter_pair[OF
            assms(1)assms(3)]HK1_normal]] by auto
    hence "x <# (H  K1) #> inv x = (H  K1)"
      using xHK subgroup.subset[OF subgroups_Inter_pair[OF assms(1) incl_subgroup[OF assms(3)
                                                            normal_imp_subgroup[OF assms(4)]]]]
      unfolding normalizer_def stabilizer_def by auto
    moreover have "H   normalizer G H1"
      using subgroup.subset[OF normal_imp_subgroup_normalizer[OF assms(1)assms(2)]] by auto
    hence "x <# H1 #> inv x = H1"
      using xHK subgroup.subset[OF  incl_subgroup[OF assms(1) normal_imp_subgroup[OF assms(2)]]]
      unfolding normalizer_def stabilizer_def by auto
    ultimately have "H1 <#> H  K1 = (x <# H1 #> inv x) <#> (x <#  H  K1 #> inv x)" by auto
    also have "... = ({x} <#> H1) <#> {inv x} <#> ({x} <#>  H  K1 <#> {inv x})"
      by (simp add : r_coset_eq_set_mult l_coset_eq_set_mult)
    also have "... = ({x} <#> H1 <#> {inv x} <#> {x}) <#>  (H  K1 <#> {inv x})"
      using HK1 allG(3) set_mult_assoc setmult_subset_G xG(1) by auto
    also have "... = ({x} <#> H1 <#> {𝟭}) <#>  (H  K1 <#> {inv x})"
      using allG xG coset_mult_assoc by (simp add: r_coset_eq_set_mult setmult_subset_G)
    also have "... =({x} <#> H1) <#>  (H  K1 <#> {inv x})"
      using coset_mult_one r_coset_eq_set_mult[of G H1 𝟭] set_mult_assoc[OF xG(1) allG(3)] allG
      by auto
    also have "... = {x} <#> (H1 <#> H  K1) <#> {inv x}"
      using allG xG set_mult_assoc setmult_subset_G by (metis inf.coboundedI2)
    finally have "H1 <#> H  K1 = x <# (H1 <#> H  K1) #> inv x"
      using xG setmult_subset_G allG by (simp add: l_coset_eq_set_mult r_coset_eq_set_mult)
    thus "x  {g  carrier G. (λH{H. H  carrier G}. g <# H #> inv g) (H1 <#> H  K1)
                                                                       = H1 <#> H  K1}"
      using xG allG setmult_subset_G[OF allG(3), where ?K = "HK1"] xHK
      by auto
  qed
qed

lemma (in group) preliminary1:
  assumes "subgroup  H G"
    and "H1Gcarrier := H"
    and  "subgroup K G"
    and "K1Gcarrier:=K"
  shows " (HK)  (H1<#>(HK1)) = (H1K)<#>(HK1)"
proof
  have all_inclG : "H  carrier G" "H1  carrier G" "K  carrier G" "K1  carrier G"
    using assms subgroup.subset normal_imp_subgroup incl_subgroup apply blast+.
  show "H  K  (H1 <#> H  K1)  H1  K <#> H  K1"
  proof
    fix x assume x_def : "x  (H  K)  (H1 <#> (H  K1))"
    from x_def have x_incl : "x  H" "x  K" "x  (H1 <#> (H  K1))" by auto
    then obtain h1 hk1 where h1hk1_def : "h1  H1" "hk1  H  K1" "h1  hk1 = x"
      using assms unfolding set_mult_def by blast
    hence "hk1  H  K" using subgroup.subset[OF normal_imp_subgroup[OF assms(4)]] by auto
    hence "inv hk1  H  K" using subgroup.m_inv_closed[OF subgroups_Inter_pair] assms by auto
    moreover have "h1  hk1  H  K" using x_incl h1hk1_def by auto
    ultimately have "h1  hk1  inv hk1  H  K"
      using subgroup.m_closed[OF subgroups_Inter_pair] assms by auto
    hence "h1  H  K" using  h1hk1_def assms subgroup.subset incl_subgroup normal_imp_subgroup
      by (metis Int_iff contra_subsetD inv_solve_right m_closed)
    hence "h1  H1  H  K" using h1hk1_def by auto
    hence "h1  H1  K" using subgroup.subset[OF normal_imp_subgroup[OF assms(2)]] by auto
    hence "h1  hk1  (H1K)<#>(HK1)"
      using h1hk1_def unfolding set_mult_def by auto
    thus " x  (H1K)<#>(HK1)" using h1hk1_def x_def by auto
  qed
  show "H1  K <#> H  K1  H  K  (H1 <#> H  K1)"
  proof-
    have "H1  K  H  K" using subgroup.subset[OF normal_imp_subgroup[OF assms(2)]] by auto
    moreover have "H  K1  H  K"
      using subgroup.subset[OF normal_imp_subgroup[OF assms(4)]] by auto
    ultimately have "H1  K <#> H  K1  H  K" unfolding set_mult_def
      using subgroup.m_closed[OF subgroups_Inter_pair [OF assms(1)assms(3)]] by blast
    moreover have "H1  K  H1" by auto
    hence "H1  K <#> H  K1  (H1 <#> H  K1)" unfolding set_mult_def by auto
    ultimately show "H1  K <#> H  K1  H  K  (H1 <#> H  K1)" by auto
  qed
qed

lemma (in group) preliminary2:
  assumes "subgroup  H G"
    and "H1Gcarrier := H"
    and  "subgroup K G"
    and "K1Gcarrier:=K"
  shows "(H1<#>(HK1))  Gcarrier:=(H1<#>(HK))"
proof-
  have all_inclG : "H  carrier G" "H1  carrier G" "K  carrier G" "K1  carrier G"
    using assms subgroup.subset normal_imp_subgroup incl_subgroup apply blast+.
  have subH1:"subgroup (H1 <#> H  K) (Gcarrier := H)"
    using mult_norm_sub_in_sub[OF assms(2)subgroup_incl[OF subgroups_Inter_pair[OF assms(1)assms(3)]
          assms(1)]] assms by auto
  have "Group.group (Gcarrier:=(H1<#>(HK)))"
    using  subgroup_imp_group[OF incl_subgroup[OF assms(1) subH1]].
  moreover have subH2 : "subgroup (H1 <#> H  K1) (Gcarrier := H)"
    using mult_norm_sub_in_sub[OF assms(2) subgroup_incl[OF subgroups_Inter_pair[OF
           assms(1) incl_subgroup[OF assms(3)normal_imp_subgroup[OF assms(4)]]]]] assms by auto
  hence "(HK1)  (HK)"
    using assms subgroup.subset normal_imp_subgroup monoid.cases_scheme
    by (metis inf.mono  partial_object.simps(1) partial_object.update_convs(1) subset_refl)
  hence incl:"(H1<#>(HK1))  H1<#>(HK)" using assms subgroup.subset normal_imp_subgroup
    unfolding set_mult_def by blast
  hence "subgroup (H1 <#> H  K1) (Gcarrier := (H1<#>(HK)))"
    using assms subgroup_incl[OF incl_subgroup[OF assms(1)subH2]incl_subgroup[OF assms(1)
          subH1]] normal_imp_subgroup subgroup.subset unfolding set_mult_def by blast
  moreover have " ( x. xcarrier (Gcarrier := H1 <#> H  K) 
        H1 <#> HK1 #>Gcarrier := H1 <#> HKx = x <#Gcarrier := H1 <#> HK(H1 <#> HK1))"
  proof-
    fix x assume  "x carrier (Gcarrier := H1 <#> H  K)"
    hence x_def : "x  H1 <#> H  K" by simp
    from this obtain h1 hk where h1hk_def :"h1  H1" "hk  H  K" "h1  hk = x"
      unfolding set_mult_def by blast
    have HK1: "H  K1  carrier G"
      by (simp add: all_inclG(1) le_infI1)
    have xH : "x  H" using subgroup.subset[OF subH1] using x_def by auto
    hence allG : "h1  carrier G" "hk  carrier G" "x  carrier G"
      using assms subgroup.subset h1hk_def normal_imp_subgroup incl_subgroup apply blast+.
    hence "x <#Gcarrier := H1 <#> HK(H1 <#> HK1) =h1  hk <# (H1 <#> HK1)"
      using subgroup.subset xH h1hk_def by (simp add: l_coset_def)
    also have "... = h1 <# (hk <# (H1 <#> HK1))"
      using lcos_m_assoc[OF subgroup.subset[OF incl_subgroup[OF assms(1) subH1]]allG(1)allG(2)]
      by (metis allG(1) allG(2) assms(1) incl_subgroup lcos_m_assoc subH2 subgroup.subset)
    also have "... = h1 <# (hk <# H1 <#> HK1)"
      using set_mult_assoc all_inclG allG by (simp add: l_coset_eq_set_mult inf.coboundedI1)
    also have "... = h1 <# (hk <# H1 #> 𝟭 <#> HK1 #> 𝟭)"
      using coset_mult_one allG all_inclG l_coset_subset_G
      by (simp add: inf.coboundedI2 setmult_subset_G)
    also have "... = h1 <# (hk <# H1 #> inv hk #> hk <#> HK1 #> inv hk #> hk)"
      using all_inclG allG coset_mult_assoc l_coset_subset_G
      by (simp add: inf.coboundedI1 setmult_subset_G)
    finally have "x <#Gcarrier := H1 <#> H  K(H1 <#> H  K1) 
                  = h1 <# ((hk <# H1 #> inv hk) <#> (hk <# HK1 #> inv hk) #> hk)"
      using rcos_assoc_lcos allG all_inclG HK1
      by (simp add: l_coset_subset_G r_coset_subset_G setmult_rcos_assoc)
    moreover have "H   normalizer G H1"
      using assms h1hk_def subgroup.subset[OF normal_imp_subgroup_normalizer] by simp
    hence "g. g  H   g  {g  carrier G. (λH{H. H  carrier G}. g <# H #> inv g) H1 = H1}"
      using all_inclG assms unfolding normalizer_def stabilizer_def by auto
    hence "g. g  H   g <# H1 #> inv g = H1" using all_inclG by simp
    hence "(hk <# H1 #> inv hk) = H1" using h1hk_def all_inclG by simp
    moreover have "HK  normalizer G (HK1)"
      using normal_inter[OF assms(3)assms(1)assms(4)] assms subgroups_Inter_pair
            subgroup.subset[OF normal_imp_subgroup_normalizer] by (simp add: inf_commute)
    hence "g. gHK  g{gcarrier G. (λH{H. H  carrier G}. g <# H #> inv g) (HK1) = HK1}"
      using all_inclG assms unfolding normalizer_def stabilizer_def by auto
    hence "g. g  HK   g <# (HK1) #> inv g = HK1"
      using subgroup.subset[OF subgroups_Inter_pair[OF assms(1) incl_subgroup[OF
            assms(3)normal_imp_subgroup[OF assms(4)]]]] by auto
    hence "(hk <# HK1 #> inv hk) = HK1" using h1hk_def by simp
    ultimately have "x <#Gcarrier := H1 <#> H  K(H1 <#> H  K1) = h1 <#(H1 <#> (H  K1)#> hk)"
      by auto
    also have "... = h1 <# H1 <#> ((H  K1)#> hk)"
      using set_mult_assoc[where ?M = "{h1}" and ?H = "H1" and ?K = "(H  K1)#> hk"] allG all_inclG
      by (simp add: l_coset_eq_set_mult inf.coboundedI2 r_coset_subset_G setmult_rcos_assoc)
    also have "... = H1 <#> ((H  K1)#> hk)"
      using coset_join3 allG incl_subgroup[OF assms(1)normal_imp_subgroup[OF assms(2)]] h1hk_def
      by auto
    finally have eq1 : "x <#Gcarrier := H1 <#> H  K(H1 <#> H  K1) = H1 <#> (H  K1) #> hk"
      by (simp add: allG(2) all_inclG inf.coboundedI2 setmult_rcos_assoc)
    have "H1 <#> H  K1 #>Gcarrier := H1 <#> H  Kx = H1 <#> H  K1 #> (h1  hk)"
      using subgroup.subset xH h1hk_def by (simp add: r_coset_def)
    also have "... = H1 <#> H  K1 #> h1 #> hk"
      using coset_mult_assoc by (simp add: allG all_inclG inf.coboundedI2 setmult_subset_G)
    also have"... =  H  K1 <#> H1 #> h1 #> hk"
      using commut_normal_subgroup[OF assms(1)assms(2)subgroup_incl[OF subgroups_Inter_pair[OF
           assms(1)incl_subgroup[OF assms(3)normal_imp_subgroup[OF assms(4)]]]assms(1)]] by simp
    also have "... = H  K1 <#> H1  #> hk"
      using coset_join2[OF allG(1)incl_subgroup[OF assms(1)normal_imp_subgroup]
            h1hk_def(1)] all_inclG allG assms by (metis inf.coboundedI2 setmult_rcos_assoc)
    finally  have "H1 <#> H  K1 #>Gcarrier := H1 <#> H  Kx =H1 <#> H  K1  #> hk"
      using commut_normal_subgroup[OF assms(1)assms(2)subgroup_incl[OF subgroups_Inter_pair[OF
           assms(1)incl_subgroup[OF assms(3)normal_imp_subgroup[OF assms(4)]]]assms(1)]] by simp
    thus " H1 <#> H  K1 #>Gcarrier := H1 <#> H  Kx =
             x <#Gcarrier := H1 <#> H  K(H1 <#> H  K1)" using eq1 by simp
  qed
  ultimately show "H1 <#> H  K1  Gcarrier := H1 <#> H  K"
    unfolding normal_def normal_axioms_def by auto
qed


proposition (in group)  Zassenhaus_1:
  assumes "subgroup  H G"
    and "H1Gcarrier := H"
    and  "subgroup K G"
    and "K1Gcarrier:=K"
  shows "(Gcarrier:= H1 <#> (HK) Mod (H1<#>HK1))  (Gcarrier:= (HK) Mod  ((H1K)<#>(HK1)))"
proof-
  define N  and N1 where "N = (HK)" and "N1 =H1<#>(HK1)"
  have normal_N_N1 : "subgroup N (Gcarrier:=(normalizer G N1))"
    by (simp add: N1_def N_def assms distinc normal_imp_subgroup)
  have Hp:"(Gcarrier:= N<#>N1 Mod N1)   (Gcarrier:= N Mod (NN1))"
  by (metis N1_def N_def assms incl_subgroup inf_le1 mult_norm_sub_in_sub
        normal_N_N1 normal_imp_subgroup snd_iso_thme_recip subgroup_incl subgroups_Inter_pair)
  have H_simp: "N<#>N1 = H1<#> (HK)"
  proof-
    have H1_incl_G : "H1  carrier G"
      using assms normal_imp_subgroup incl_subgroup subgroup.subset by blast
    have K1_incl_G :"K1  carrier G"
      using assms normal_imp_subgroup incl_subgroup subgroup.subset by blast
    have "N<#>N1=  (HK)<#> (H1<#>(HK1))" by (auto simp add: N_def N1_def)
    also have "... = ((HK)<#>H1) <#>(HK1)"
      using set_mult_assoc[where ?M = "HK"] K1_incl_G H1_incl_G assms
      by (simp add: inf.coboundedI2 subgroup.subset)
    also have "... = (H1<#>(HK))<#>(HK1)"
      using commut_normal_subgroup assms subgroup_incl subgroups_Inter_pair by auto
    also have "... =  H1 <#> ((HK)<#>(HK1))"
      using set_mult_assoc K1_incl_G H1_incl_G assms
      by (simp add: inf.coboundedI2 subgroup.subset)
    also have " ((HK)<#>(HK1)) = (HK)"
    proof (intro set_mult_subgroup_idem[where ?H = "HK" and ?N="HK1",
             OF subgroups_Inter_pair[OF assms(1) assms(3)]])
      show "subgroup (H  K1) (Gcarrier := H  K)"
        using subgroup_incl[where ?I = "HK1" and ?J = "HK",OF subgroups_Inter_pair[OF assms(1)
              incl_subgroup[OF assms(3) normal_imp_subgroup]] subgroups_Inter_pair] assms
              normal_imp_subgroup by (metis inf_commute normal_inter)
    qed
    hence " H1 <#> ((HK)<#>(HK1)) =  H1 <#> ((HK))"
      by simp
    thus "N <#> N1 = H1 <#> H  K"
      by (simp add: calculation)
  qed

  have "NN1 = (H1K)<#>(HK1)"
    using preliminary1 assms N_def N1_def by simp
  thus  "(Gcarrier:= H1 <#> (HK) Mod N1)   (Gcarrier:= N Mod  ((H1K)<#>(HK1)))"
    using H_simp Hp by auto
qed


theorem (in group) Zassenhaus:
  assumes "subgroup  H G"
    and "H1Gcarrier := H"
    and  "subgroup K G"
    and "K1Gcarrier:=K"
  shows "(Gcarrier:= H1 <#> (HK) Mod (H1<#>(HK1)))  
         (Gcarrier:= K1 <#> (HK) Mod (K1<#>(KH1)))"
proof-
  define Gmod1 Gmod2 Gmod3 Gmod4
    where "Gmod1 = (Gcarrier:= H1 <#> (HK) Mod (H1<#>(HK1))) "
      and "Gmod2 = (Gcarrier:= K1 <#> (KH) Mod (K1<#>(KH1)))"
      and "Gmod3 = (Gcarrier:= (HK) Mod  ((H1K)<#>(HK1)))"
      and "Gmod4 = (Gcarrier:= (KH) Mod  ((K1H)<#>(KH1)))"
  have Hyp :  "Gmod1   Gmod3" "Gmod2    Gmod4"
    using Zassenhaus_1 assms Gmod1_def Gmod2_def Gmod3_def Gmod4_def by auto
  have Hp : "Gmod3 = Gcarrier:= (KH) Mod ((KH1)<#>(K1H))"
    by (simp add: Gmod3_def inf_commute)
  have "(KH1)<#>(K1H) = (K1H)<#>(KH1)"
  proof (intro commut_normal_subgroup[OF subgroups_Inter_pair[OF assms(1)assms(3)]])
    show "K1  H  Gcarrier := H  K"
      using normal_inter[OF assms(3)assms(1)assms(4)] by (simp add: inf_commute)
   next
    show "subgroup (K  H1) (Gcarrier := H  K)"
      using subgroup_incl by (simp add: assms inf_commute normal_imp_subgroup normal_inter)
  qed
  hence  "Gmod3  = Gmod4" using Hp Gmod4_def by simp
  hence "Gmod1  Gmod2"
    by (metis assms group.iso_sym iso_trans Hyp normal.factorgroup_is_group Gmod2_def preliminary2)
  thus ?thesis using Gmod1_def Gmod2_def by (simp add: inf_commute)
qed

end