Theory Winding_Number_Eval.Missing_Topology
section ‹Some useful lemmas in topology›
theory Missing_Topology imports "HOL-Analysis.Multivariate_Analysis"
begin
subsection ‹Misc›
lemma continuous_on_neq_split:
fixes f :: "'a::linear_continuum_topology ⇒ 'b::linorder_topology"
assumes "∀x∈s. f x≠y" "continuous_on s f" "connected s"
shows "(∀x∈s. f x>y) ∨ (∀x∈s. f x<y)"
by (smt (verit) assms connectedD_interval connected_continuous_image imageE image_eqI leI)
lemma
fixes f::"'a::linorder_topology ⇒ 'b::topological_space"
assumes "continuous_on {a..b} f" "a<b"
shows continuous_on_at_left:"continuous (at_left b) f"
and continuous_on_at_right:"continuous (at_right a) f"
using assms continuous_on_Icc_at_leftD continuous_within apply blast
using assms continuous_on_Icc_at_rightD continuous_within by blast
subsection ‹More about @{term filtermap}›
lemma filtermap_at_bot_linear_eq:
fixes c::"'a::linordered_field"
assumes "c≠0"
shows "filtermap (λx. x * c + b) at_bot = (if c>0 then at_bot else at_top)"
proof (cases "c>0")
case True
then have "filtermap (λx. x * c + b) at_bot = at_bot"
apply (intro filtermap_fun_inverse[of "λx. (x-b) / c"])
subgoal unfolding eventually_at_bot_linorder filterlim_at_bot
by (auto simp add: field_simps)
subgoal unfolding eventually_at_bot_linorder filterlim_at_bot
by (metis mult.commute real_affinity_le)
by auto
then show ?thesis using ‹c>0› by auto
next
case False
then have "c<0" using ‹c≠0› by auto
then have "filtermap (λx. x * c + b) at_bot = at_top"
apply (intro filtermap_fun_inverse[of "λx. (x-b) / c"])
subgoal unfolding eventually_at_top_linorder filterlim_at_bot
by (meson le_diff_eq neg_divide_le_eq)
subgoal unfolding eventually_at_bot_linorder filterlim_at_top
using ‹c < 0› by (meson False diff_le_eq le_divide_eq)
by auto
then show ?thesis using ‹c<0› by auto
qed
lemma filtermap_linear_at_left:
fixes c::"'a::{linordered_field,linorder_topology,real_normed_field}"
assumes "c≠0"
shows "filtermap (λx. c*x+b) (at_left x) = (if c>0 then at_left (c*x+b) else at_right (c*x+b))"
proof -
let ?f = "λx. c*x+b"
have "filtermap (λx. c*x+b) (at_left x) = (at (?f x) within ?f ` {..<x})"
proof (subst filtermap_linear_at_within)
show "bij ?f" using ‹c≠0›
by (auto intro!: o_bij[of "λx. (x-b)/c"])
show "isCont ?f x" by auto
show "⋀S. open S ⟹ open (?f ` S)"
using open_times_image[OF ‹c≠0›,THEN open_translation,of _ b]
by (simp add:image_image add.commute)
show "at (?f x) within ?f ` {..<x} = at (?f x) within ?f ` {..<x}" by simp
qed
moreover have "?f ` {..<x} = {..<?f x}" when "c>0"
using image_linear_lessThan[OF ‹c≠0›,of b x] that by auto
moreover have "?f ` {..<x} = {?f x<..}" when "¬ c>0"
using image_linear_lessThan[OF ‹c≠0›,of b x] that by auto
ultimately show ?thesis by auto
qed
lemma filtermap_linear_at_right:
fixes c::"'a::{linordered_field,linorder_topology,real_normed_field}"
assumes "c≠0"
shows "filtermap (λx. c*x+b) (at_right x) = (if c>0 then at_right (c*x+b) else at_left (c*x+b))"
proof -
let ?f = "λx. c*x+b"
have "filtermap ?f (at_right x) = (at (?f x) within ?f ` {x<..})"
proof (subst filtermap_linear_at_within)
show "bij ?f" using ‹c≠0›
by (auto intro!: o_bij[of "λx. (x-b)/c"])
show "isCont ?f x" by auto
show "⋀S. open S ⟹ open (?f ` S)"
using open_times_image[OF ‹c≠0›,THEN open_translation,of _ b]
by (simp add:image_image add.commute)
show "at (?f x) within ?f ` {x<..} = at (?f x) within ?f ` {x<..}" by simp
qed
moreover have "?f ` {x<..} = {?f x<..}" when "c>0"
using image_linear_greaterThan[OF ‹c≠0›,of b x] that by auto
moreover have "?f ` {x<..} = {..<?f x}" when "¬ c>0"
using image_linear_greaterThan[OF ‹c≠0›,of b x] that by auto
ultimately show ?thesis by auto
qed
lemma filtermap_at_top_linear_eq:
fixes c::"'a::linordered_field"
assumes "c≠0"
shows "filtermap (λx. x * c + b) at_top = (if c>0 then at_top else at_bot)"
proof (cases "c>0")
case True
then have "filtermap (λx. x * c + b) at_top = at_top"
apply (intro filtermap_fun_inverse[of "λx. (x-b) / c"])
subgoal unfolding eventually_at_top_linorder filterlim_at_top
by (meson le_diff_eq pos_le_divide_eq)
subgoal unfolding eventually_at_top_linorder filterlim_at_top
apply auto
by (metis mult.commute real_le_affinity)
by auto
then show ?thesis using ‹c>0› by auto
next
case False
then have "c<0" using ‹c≠0› by auto
then have "filtermap (λx. x * c + b) at_top = at_bot"
apply (intro filtermap_fun_inverse[of "λx. (x-b) / c"])
subgoal unfolding eventually_at_bot_linorder filterlim_at_top
by (auto simp add: field_simps)
subgoal unfolding eventually_at_top_linorder filterlim_at_bot
by (meson le_diff_eq neg_divide_le_eq)
by auto
then show ?thesis using ‹c<0› by auto
qed
subsection ‹More about @{term filterlim}›
lemma filterlim_at_top_linear_iff:
fixes f::"'a::linordered_field ⇒ 'b"
assumes "c≠0"
shows "(LIM x at_top. f (x * c + b) :> F2) ⟷ (if c>0 then (LIM x at_top. f x :> F2)
else (LIM x at_bot. f x :> F2))"
unfolding filterlim_def
apply (subst filtermap_filtermap[of f "λx. x * c + b",symmetric])
using assms by (auto simp add:filtermap_at_top_linear_eq)
lemma filterlim_at_bot_linear_iff:
fixes f::"'a::linordered_field ⇒ 'b"
assumes "c≠0"
shows "(LIM x at_bot. f (x * c + b) :> F2) ⟷ (if c>0 then (LIM x at_bot. f x :> F2)
else (LIM x at_top. f x :> F2)) "
unfolding filterlim_def
apply (subst filtermap_filtermap[of f "λx. x * c + b",symmetric])
using assms by (auto simp add:filtermap_at_bot_linear_eq)
end