Theory LList
theory LList
imports
HOLCF
Nats
begin
section‹The fully-lazy list type.›
text‹The list can contain anything that is a predomain.›
default_sort predomain
domain 'a llist =
lnil (‹lnil›)
| lcons (lazy "'a") (lazy "'a llist") (infixr ‹:@› 65)
lemma llist_map_eval_simps[simp]:
"llist_map⋅f⋅⊥ = ⊥"
"llist_map⋅f⋅lnil = lnil"
"llist_map⋅f⋅(x :@ xs) = f⋅x :@ llist_map⋅f⋅xs"
apply (subst llist_map_unfold)
apply simp
apply (subst llist_map_unfold)
apply (simp add: lnil_def)
apply (subst llist_map_unfold)
apply (simp add: lcons_def)
done
lemma llist_case_distr_strict:
"f⋅⊥ = ⊥ ⟹ f⋅(llist_case⋅g⋅h⋅xxs) = llist_case⋅(f⋅g)⋅(Λ x xs. f⋅(h⋅x⋅xs))⋅xxs"
by (cases xxs) simp_all
fixrec lsingleton :: "('a::predomain) → 'a llist"
where
"lsingleton⋅x = x :@ lnil"
fixrec lappend :: "'a llist → 'a llist → 'a llist"
where
"lappend⋅lnil⋅ys = ys"
| "lappend⋅(x :@ xs)⋅ys = x :@ (lappend⋅xs⋅ys)"
abbreviation
lappend_syn :: "'a llist ⇒ 'a llist ⇒ 'a llist" (infixr ‹:++› 65) where
"xs :++ ys ≡ lappend⋅xs⋅ys"
lemma lappend_strict': "lappend⋅⊥ = (Λ a. ⊥)"
by fixrec_simp
text‹This gives us that @{thm lappend_strict'}.›
text ‹This is where we use @{thm inst_cfun_pcpo}›
lemma lappend_strict[simp]: "lappend⋅⊥ = ⊥"
by (rule cfun_eqI) (simp add: lappend_strict')
lemma lappend_assoc: "(xs :++ ys) :++ zs = xs :++ (ys :++ zs)"
by (induct xs, simp_all)
lemma lappend_lnil_id_left[simp]: "lappend⋅lnil = ID"
by (rule cfun_eqI) simp
lemma lappend_lnil_id_right[simp]: "xs :++ lnil = xs"
by (induct xs) simp_all
fixrec lconcat :: "'a llist llist → 'a llist"
where
"lconcat⋅lnil = lnil"
| "lconcat⋅(x :@ xs) = x :++ lconcat⋅xs"
lemma lconcat_strict[simp]: "lconcat⋅⊥ = ⊥"
by fixrec_simp
fixrec lall :: "('a → tr) → 'a llist → tr"
where
"lall⋅p⋅lnil = TT"
| "lall⋅p⋅(x :@ xs) = (p⋅x andalso lall⋅p⋅xs)"
lemma lall_strict[simp]: "lall⋅p⋅⊥ = ⊥"
by fixrec_simp
fixrec lfilter :: "('a → tr) → 'a llist → 'a llist"
where
"lfilter⋅p⋅lnil = lnil"
| "lfilter⋅p⋅(x :@ xs) = If p⋅x then x :@ lfilter⋅p⋅xs else lfilter⋅p⋅xs"
lemma lfilter_strict[simp]: "lfilter⋅p⋅⊥ = ⊥"
by fixrec_simp
lemma lfilter_const_true: "lfilter⋅(Λ x. TT)⋅xs = xs"
by (induct xs, simp_all)
lemma lfilter_lnil: "(lfilter⋅p⋅xs = lnil) = (lall⋅(neg oo p)⋅xs = TT)"
proof(induct xs)
fix a l assume indhyp: "(lfilter⋅p⋅l = lnil) = (lall⋅(Tr.neg oo p)⋅l = TT)"
thus "(lfilter⋅p⋅(a :@ l) = lnil) = (lall⋅(Tr.neg oo p)⋅(a :@ l) = TT)"
by (cases "p⋅a" rule: trE, simp_all)
qed simp_all
lemma filter_filter: "lfilter⋅p⋅(lfilter⋅q⋅xs) = lfilter⋅(Λ x. q⋅x andalso p⋅x)⋅xs"
proof(induct xs)
fix a l assume "lfilter⋅p⋅(lfilter⋅q⋅l) = lfilter⋅(Λ(x::'a). q⋅x andalso p⋅x)⋅l"
thus "lfilter⋅p⋅(lfilter⋅q⋅(a :@ l)) = lfilter⋅(Λ(x::'a). q⋅x andalso p⋅x)⋅(a :@ l)"
by (cases "q⋅a" rule: trE, simp_all)
qed simp_all
fixrec ldropWhile :: "('a → tr) → 'a llist → 'a llist"
where
"ldropWhile⋅p⋅lnil = lnil"
| "ldropWhile⋅p⋅(x :@ xs) = If p⋅x then ldropWhile⋅p⋅xs else x :@ xs"
lemma ldropWhile_strict[simp]: "ldropWhile⋅p⋅⊥ = ⊥"
by fixrec_simp
lemma ldropWhile_lnil: "(ldropWhile⋅p⋅xs = lnil) = (lall⋅p⋅xs = TT)"
proof(induct xs)
fix a l assume "(ldropWhile⋅p⋅l = lnil) = (lall⋅p⋅l = TT)"
thus "(ldropWhile⋅p⋅(a :@ l) = lnil) = (lall⋅p⋅(a :@ l) = TT)"
by (cases "p⋅a" rule: trE, simp_all)
qed simp_all
fixrec literate :: "('a → 'a) → 'a → 'a llist"
where
"literate⋅f⋅x = x :@ literate⋅f⋅(f⋅x)"
declare literate.simps[simp del]
text‹This order of tests is convenient for the nub proof. I can
imagine the other would be convenient for other proofs...›
fixrec lmember :: "('a → 'a → tr) → 'a → 'a llist → tr"
where
"lmember⋅eq⋅x⋅lnil = FF"
| "lmember⋅eq⋅x⋅(lcons⋅y⋅ys) = (lmember⋅eq⋅x⋅ys orelse eq⋅y⋅x)"
lemma lmember_strict[simp]: "lmember⋅eq⋅x⋅⊥ = ⊥"
by fixrec_simp
fixrec llength :: "'a llist → Nat"
where
"llength⋅lnil = 0"
| "llength⋅(lcons⋅x⋅xs) = 1 + llength⋅xs"
lemma llength_strict[simp]: "llength⋅⊥ = ⊥"
by fixrec_simp
fixrec lmap :: "('a → 'b) → 'a llist → 'b llist"
where
"lmap⋅f⋅lnil = lnil"
| "lmap⋅f⋅(x :@ xs) = f⋅x :@ lmap⋅f⋅xs"
lemma lmap_strict[simp]: "lmap⋅f⋅⊥ = ⊥"
by fixrec_simp
lemma lmap_lmap:
"lmap⋅f⋅(lmap⋅g⋅xs) = lmap⋅(f oo g)⋅xs"
by (induct xs) simp_all
text ‹The traditional list monad uses lconcatMap as its bind.›
definition
"lconcatMap ≡ (Λ f. lconcat oo lmap⋅f)"
lemma lconcatMap_comp_simps[simp]:
"lconcatMap⋅f⋅⊥ = ⊥"
"lconcatMap⋅f⋅lnil = lnil"
"lconcatMap⋅f⋅(x :@ xs) = f⋅x :++ lconcatMap⋅f⋅xs"
by (simp_all add: lconcatMap_def)
lemma lconcatMap_lsingleton[simp]:
"lconcatMap⋅lsingleton⋅x = x"
by (induct x) (simp_all add: lconcatMap_def)
text‹This @{term "zipWith"} function is only fully defined if the
lists have the same length.›
fixrec lzipWith0 :: "('a → 'b → 'c) → 'a llist → 'b llist → 'c llist"
where
"lzipWith0⋅f⋅(a :@ as)⋅(b :@ bs) = f⋅a⋅b :@ lzipWith0⋅f⋅as⋅bs"
| "lzipWith0⋅f⋅lnil⋅lnil = lnil"
lemma lzipWith0_stricts [simp]:
"lzipWith0⋅f⋅⊥⋅ys = ⊥"
"lzipWith0⋅f⋅lnil⋅⊥ = ⊥"
"lzipWith0⋅f⋅(x :@ xs)⋅⊥ = ⊥"
by fixrec_simp+
lemma lzipWith0_undefs [simp]:
"lzipWith0⋅f⋅lnil⋅(y :@ ys) = ⊥"
"lzipWith0⋅f⋅(x :@ xs)⋅lnil = ⊥"
by fixrec_simp+
text‹This @{term "zipWith"} function follows Haskell's in being more
permissive: zipping uneven lists results in a list as long as the
shortest one. This is what the backtracking monad expects.›
fixrec lzipWith :: "('a → 'b → 'c) → 'a llist → 'b llist → 'c llist"
where
"lzipWith⋅f⋅(a :@ as)⋅(b :@ bs) = f⋅a⋅b :@ lzipWith⋅f⋅as⋅bs"
| (unchecked) "lzipWith⋅f⋅xs⋅ys = lnil"
lemma lzipWith_simps [simp]:
"lzipWith⋅f⋅(x :@ xs)⋅(y :@ ys) = f⋅x⋅y :@ lzipWith⋅f⋅xs⋅ys"
"lzipWith⋅f⋅(x :@ xs)⋅lnil = lnil"
"lzipWith⋅f⋅lnil⋅(y :@ ys) = lnil"
"lzipWith⋅f⋅lnil⋅lnil = lnil"
by fixrec_simp+
lemma lzipWith_stricts [simp]:
"lzipWith⋅f⋅⊥⋅ys = ⊥"
"lzipWith⋅f⋅(x :@ xs)⋅⊥ = ⊥"
by fixrec_simp+
text‹Homomorphism properties, see Bird's life's work.›
lemma lmap_lappend_dist:
"lmap⋅f⋅(xs :++ ys) = lmap⋅f⋅xs :++ lmap⋅f⋅ys"
by (induct xs) simp_all
lemma lconcat_lappend_dist:
"lconcat⋅(xs :++ ys) = lconcat⋅xs :++ lconcat⋅ys"
by (induct xs) (simp_all add: lappend_assoc)
lemma lconcatMap_assoc:
"lconcatMap⋅h⋅(lconcatMap⋅g⋅f) = lconcatMap⋅(Λ v. lconcatMap⋅h⋅(g⋅v))⋅f"
by (induct f) (simp_all add: lmap_lappend_dist lconcat_lappend_dist lconcatMap_def)
lemma lconcatMap_lappend_dist:
"lconcatMap⋅f⋅(xs :++ ys) = lconcatMap⋅f⋅xs :++ lconcatMap⋅f⋅ys"
unfolding lconcatMap_def by (simp add: lconcat_lappend_dist lmap_lappend_dist)
lemma lmap_not_bottoms[simp]:
"x ≠ ⊥ ⟹ lmap⋅f⋅x ≠ ⊥"
by (cases x) simp_all
lemma lsingleton_not_bottom[simp]:
"lsingleton⋅x ≠ ⊥"
by simp
lemma lappend_not_bottom[simp]:
"⟦ xs ≠ ⊥; xs = lnil ⟹ ys ≠ ⊥ ⟧ ⟹ xs :++ ys ≠ ⊥"
apply (cases xs)
apply simp_all
done
default_sort "domain"
end