Theory MiscTools
section ‹Toolbox of various definitions and theorems about sets, relations and lists›
theory MiscTools
imports
"HOL-Library.Discrete_Functions"
"HOL-Library.Code_Target_Nat"
"HOL-Library.Indicator_Function"
Argmax
RelationProperties
begin
lemmas restrict_def = RelationOperators.restrict_def
subsection ‹Facts and notations about relations, sets and functions.›
notation paste (infix ‹+<› 75)
text ‹‹+<› abbreviation permits to shorten the notation for altering a function f in a single point by giving a pair (a, b) so that the new function has value b with argument a.›
abbreviation singlepaste
where "singlepaste f pair == f +* {(fst pair, snd pair)}"
notation singlepaste (infix ‹+<› 75)
text ‹‹--› abbreviation permits to shorten the notation for considering a function outside a single point.›
abbreviation singleoutside (infix ‹--› 75)
where "f -- x ≡ f outside {x}"
text ‹Turns a HOL function into a set-theoretical function›
definition
"Graph f = {(x, f x) | x . True}"
text ‹Inverts @{term Graph} (which is equivalently done by @{term eval_rel}).›
definition
"toFunction R = (λ x . (R ,, x))"
lemma
"toFunction = eval_rel"
using toFunction_def by blast
lemma lm001:
"((P ∪ Q) || X) = ((P || X) ∪ (Q||X))"
unfolding restrict_def by blast
text ‹update behaves like P +* Q (paste), but without enlarging P's Domain. update is the set theoretic equivalent of the lambda function update @{term fun_upd}›
definition update
where "update P Q = P +* (Q || (Domain P))"
notation update (infix ‹+^› 75)
definition runiqer :: "('a × 'b) set => ('a × 'b) set"
where "runiqer R = { (x, THE y. y ∈ R `` {x})| x. x ∈ Domain R }"
text ‹@{term graph} is like @{term Graph}, but with a built-in restriction to a given set @{term X}.
This makes it computable for finite X, whereas @{term "Graph f || X"} is not computable.
Duplicates the eponymous definition found in ‹Function_Order›, which is otherwise not needed.›
definition graph
where "graph X f = {(x, f x) | x. x ∈ X}"
lemma lm002:
assumes "runiq R"
shows "R ⊇ graph (Domain R) (toFunction R)"
unfolding graph_def toFunction_def
using assms graph_def toFunction_def eval_runiq_rel by fastforce
lemma lm003:
assumes "runiq R"
shows "R ⊆ graph (Domain R) (toFunction R)"
unfolding graph_def toFunction_def
using assms eval_runiq_rel runiq_basic Domain.DomainI mem_Collect_eq subrelI by fastforce
lemma lm004:
assumes "runiq R"
shows "R = graph (Domain R) (toFunction R)"
using assms lm002 lm003 by fast
lemma domainOfGraph:
"runiq(graph X f) & Domain(graph X f)=X"
unfolding graph_def
using rightUniqueRestrictedGraph by fast
abbreviation "eval_rel2 (R::('a × ('b set)) set) (x::'a) == ⋃ (R``{x})"
notation eval_rel2 (infix ‹,,,› 75)
lemma imageEquivalence:
assumes "runiq (f::(('a × ('b set)) set))" "x ∈ Domain f"
shows "f,,x = f,,,x"
using assms Image_runiq_eq_eval cSup_singleton by metis
lemma lm005:
"Graph f=graph UNIV f"
unfolding Graph_def graph_def by simp
lemma graphIntersection:
"graph (X ∩ Y) f ⊆ ((graph X f) || Y)"
unfolding graph_def
using Int_iff mem_Collect_eq RelationOperators.restrict_ext subrelI by auto
definition runiqs
where "runiqs={f. runiq f}"
lemma outsideOutside:
"((P outside X) outside Y) = P outside (X∪Y)"
unfolding Outside_def by blast
corollary lm006:
"((P outside X) outside X) = P outside X"
using outsideOutside by force
lemma lm007:
assumes "(X ∩ Domain P) ⊆ Domain Q"
shows "P +* Q = (P outside X) +* Q"
unfolding paste_def Outside_def using assms by blast
corollary lm008:
"P +* Q = (P outside (Domain Q)) +* Q"
using lm007 by fast
corollary outsideUnion:
"R = (R outside {x}) ∪ ({x} × (R `` {x}))"
using restrict_to_singleton outside_union_restrict by metis
lemma lm009:
"P = P ∪ {x}×P``{x}"
by (metis outsideUnion sup.right_idem)
corollary lm010:
"R = (R outside {x}) +* ({x} × (R `` {x}))"
by (metis paste_outside_restrict restrict_to_singleton)
lemma lm011:
"R ⊆ R +* ({x} × (R``{x}))"
using lm010 lm008 paste_def Outside_def by fast
lemma lm012:
"R ⊇ R+*({x} × (R``{x}))"
by (metis Un_least Un_upper1 outside_union_restrict paste_def
restrict_to_singleton restriction_is_subrel)
lemma lm013:
"R = R +* ({x} × (R``{x}))"
using lm011 lm012 by force
lemma rightUniqueTrivialCartes:
assumes "trivial Y"
shows "runiq (X × Y)"
using assms runiq_def Image_subset lm013 trivial_subset lm011 by (metis(no_types))
lemma lm014:
"runiq ((X × {x}) +* (Y × {y}))"
using rightUniqueTrivialCartes trivial_singleton runiq_paste2 by metis
lemma lm015:
"(P || (X ∩ Y)) ⊆ (P||X) & P outside (X ∪ Y) ⊆ P outside X"
by (metis doubleRestriction le_sup_iff outsideOutside outside_union_restrict subset_refl)
lemma lm016:
"P || X ⊆ (P||(X ∪ Y)) & P outside X ⊆ P outside (X ∩ Y)"
using lm015 distrib_sup_le sup_idem le_inf_iff subset_antisym sup_commute
by (metis sup_ge1)
lemma lm017:
"P``(X ∩ Domain P) = P``X"
by blast
lemma cardinalityOneSubset:
assumes "card X=1" and "X ⊆ Y"
shows "Union X ∈ Y"
using assms cardinalityOneTheElemIdentity by (metis cSup_singleton insert_subset)
lemma cardinalityOneTheElem:
assumes "card X=1" "X ⊆ Y"
shows "the_elem X ∈ Y"
using assms by (metis (full_types) insert_subset cardinalityOneTheElemIdentity)
lemma lm018:
"(R outside X1) outside X2 = (R outside X2) outside X1"
by (metis outsideOutside sup_commute)
subsection ‹Ordered relations›
lemma lm019:
assumes "card X≥1" "∀x∈X. y > x"
shows "y > Max X"
using assms by (metis (poly_guards_query) Max_in One_nat_def card_eq_0_iff lessI not_le)
lemma lm020:
assumes "finite X" "mx ∈ X" "f x < f mx"
shows"x ∉ argmax f X"
using assms not_less by fastforce
lemma lm021:
assumes "finite X" "mx ∈ X" "∀x ∈ X-{mx}. f x < f mx"
shows "argmax f X ⊆ {mx}"
using assms mk_disjoint_insert by force
lemma lm022:
assumes "finite X" "mx ∈ X" "∀x ∈ X-{mx}. f x < f mx"
shows "argmax f X = {mx}"
using assms lm021 by (metis argmax_non_empty_iff equals0D subset_singletonD)
corollary argmaxProperty:
"(finite X & mx ∈ X & (∀aa ∈ X-{mx}. f aa < f mx)) ⟶ argmax f X = {mx}"
using lm022 by metis
corollary lm023:
assumes "finite X" "mx ∈ X" "∀x ∈ X. x ≠ mx ⟶ f x < f mx"
shows "argmax f X = {mx}"
using assms lm022 by (metis Diff_iff insertI1)
lemma lm024:
assumes "f ∘ g = id"
shows "inj_on g UNIV" using assms
by (metis inj_on_id inj_on_imageI2)
lemma lm025:
assumes "inj_on f X"
shows "inj_on (image f) (Pow X)"
using assms inj_on_image_eq_iff inj_onI PowD by (metis (mono_tags, lifting))
lemma injectionPowerset:
assumes "inj_on f Y" "X ⊆ Y"
shows "inj_on (image f) (Pow X)"
using assms lm025 by (metis subset_inj_on)
definition finestpart
where "finestpart X = (%x. {x}) ` X"
lemma finestPart:
"finestpart X = {{x}|x . x∈X}"
unfolding finestpart_def by blast
lemma finestPartUnion:
"X=⋃ (finestpart X)"
using finestPart by auto
lemma lm026:
"Union ∘ finestpart = id"
using finestpart_def finestPartUnion by fastforce
lemma lm027:
"inj_on Union (finestpart ` UNIV)"
using lm026 by (metis inj_on_id inj_on_imageI)
lemma nonEqualitySetOfSets:
assumes "X ≠ Y"
shows "{{x}| x. x ∈ X} ≠ {{x}| x. x ∈ Y}"
using assms by auto
corollary lm028:
"inj_on finestpart UNIV"
using nonEqualitySetOfSets finestPart by (metis (lifting, no_types) injI)
lemma unionFinestPart:
"{Y | Y. ∃x.((Y ∈ finestpart x) ∧ (x ∈ X))} = ⋃(finestpart`X)"
by auto
lemma rangeSetOfPairs:
"Range {(fst pair, Y)| Y pair. Y ∈ finestpart (snd pair) & pair ∈ X} =
{Y. ∃x. ((Y ∈ finestpart x) ∧ (x ∈ Range X))}"
by auto
lemma setOfPairsEquality:
"{(fst pair, {y})| y pair. y ∈ snd pair & pair ∈ X} =
{(fst pair, Y)| Y pair. Y ∈ finestpart (snd pair) & pair ∈ X}"
using finestpart_def by fastforce
lemma setOfPairs:
"{(fst pair, {y})| y. y ∈ snd pair} =
{fst pair} × {{y}| y. y ∈ snd pair}"
by fastforce
lemma lm029:
"x ∈ X = ({x} ∈ finestpart X)"
using finestpart_def by force
lemma pairDifference:
"{(x,X)}-{(x,Y)} = {x}×({X}-{Y})"
by blast
lemma lm030:
assumes "⋃ P = X"
shows "P ⊆ Pow X"
using assms by blast
lemma lm031:
"argmax f {x} = {x}"
by auto
lemma sortingSameSet:
assumes "finite X"
shows "set (sorted_list_of_set X) = X"
using assms by simp
lemma lm032:
assumes "finite A"
shows "sum f A = sum f (A ∩ B) + sum f (A - B)"
using assms by (metis DiffD2 Int_iff Un_Diff_Int Un_commute finite_Un sum.union_inter_neutral)
corollary sumOutside:
assumes "finite g"
shows "sum f g = sum f (g outside X) + (sum f (g||X))"
unfolding Outside_def restrict_def using assms add.commute inf_commute lm032 by (metis)
lemma lm033:
assumes "(Domain P ⊆ Domain Q)"
shows "(P +* Q) = Q"
unfolding paste_def Outside_def using assms by fast
lemma lm034:
assumes "(P +* Q=Q)"
shows "(Domain P ⊆ Domain Q)"
using assms paste_def Outside_def by blast
lemma lm035:
"(Domain P ⊆ Domain Q) = (P +* Q=Q)"
using lm033 lm034 by metis
lemma
"(P||(Domain Q)) +* Q = Q"
by (metis Int_lower2 restrictedDomain lm035)
lemma lm036:
"P||X = P outside (Domain P - X)"
using Outside_def restrict_def by fastforce
lemma lm037:
"(P outside X) ⊆ P || ((Domain P)-X)"
using lm036 lm016 by (metis Int_commute restrictedDomain outside_reduces_domain)
lemma lm038:
"Domain (P outside X) ∩ Domain (Q || X) = {}"
using lm036
by (metis Diff_disjoint Domain_empty_iff Int_Diff inf_commute restrictedDomain
outside_reduces_domain restrict_empty)
lemma lm039:
"(P outside X) ∩ (Q || X) = {}"
using lm038 by fast
lemma lm040:
"(P outside (X ∪ Y)) ∩ (Q || X) = {} & (P outside X) ∩ (Q || (X ∩ Z)) = {}"
using Outside_def restrict_def lm039 lm015 by fast
lemma lm041:
"P outside X = P || ((Domain P) - X)"
using Outside_def restrict_def lm037 by fast
lemma lm042:
"R``(X-Y) = (R||X)``(X-Y)"
using restrict_def by blast
lemma lm043:
assumes "⋃ XX ⊆ X" "x ∈ XX" "x ≠ {}"
shows "x ∩ X ≠ {}"
using assms by blast
lemma lm044:
assumes "∀l ∈ set L1. set L2 = f2 (set l) N"
shows "set [set L2. l <- L1] = {f2 P N| P. P ∈ set (map set L1)}"
using assms by auto
lemma setVsList:
assumes "∀l ∈ set (g1 G). set (g2 l N) = f2 (set l) N"
shows "set [set (g2 l N). l <- (g1 G)] = {f2 P N| P. P ∈ set (map set (g1 G))}"
using assms by auto
lemma lm045:
"(∀l ∈ set (g1 G). set (g2 l N) = f2 (set l) N) -->
{f2 P N| P. P ∈ set (map set (g1 G))} = set [set (g2 l N). l <- g1 G]"
by auto
lemma lm046:
assumes "X ∩ Y = {}"
shows "R``X = (R outside Y)``X"
using assms Outside_def Image_def by blast
lemma lm047:
assumes "(Range P) ∩ (Range Q) = {}" "runiq (P^-1)" "runiq (Q^-1)"
shows "runiq ((P ∪ Q)^-1)"
using assms by (metis Domain_converse converse_Un disj_Un_runiq)
lemma lm048:
assumes "(Range P) ∩ (Range Q) = {}" "runiq (P^-1)" "runiq (Q^-1)"
shows "runiq ((P +* Q)^-1)"
using lm047 assms subrel_runiq by (metis converse_converse converse_subset_swap paste_sub_Un)
lemma lm049:
assumes "runiq R"
shows "card (R `` {a}) = 1 ⟷ a ∈ Domain R"
using assms card_Suc_eq One_nat_def
by (metis Image_within_domain' Suc_neq_Zero assms rightUniqueSetCardinality)
lemma lm050:
"inj (λa. ((fst a, fst (snd a)), snd (snd a)))"
by (auto intro: injI)
lemma lm051:
assumes "finite X" "x > Max X"
shows "x ∉ X"
using assms Max.coboundedI by (metis leD)
lemma lm052:
assumes "finite A" "A ≠ {}"
shows "Max (f`A) ∈ f`A"
using assms by (metis Max_in finite_imageI image_is_empty)
lemma lm053:
"argmax f A ⊆ f -` {Max (f ` A)}"
by force
lemma lm054:
"argmax f A = A ∩ { x . f x = Max (f ` A) }"
by auto
lemma lm055:
"(x ∈ argmax f X) = (x ∈ X & f x = Max (f ` X))"
using argmax.simps mem_Collect_eq by (metis (mono_tags, lifting))
lemma rangeEmpty:
"Range -` {{}} = {{}}"
by auto
lemma finitePairSecondRange:
"(∀ pair ∈ R. finite (snd pair)) = (∀ y ∈ Range R. finite y)"
by fastforce
lemma lm056:
"fst ` P = snd ` (P^-1)"
by force
lemma lm057:
"fst pair = snd (flip pair) & snd pair = fst (flip pair)"
unfolding flip_def by simp
lemma flip_flip2:
"flip ∘ flip = id"
using flip_flip by fastforce
lemma lm058:
"fst = (snd∘flip)"
using lm057 by fastforce
lemma lm059:
"snd = (fst∘flip)"
using lm057 by fastforce
lemma lm060:
"inj_on fst P = inj_on (snd∘flip) P"
using lm058 by metis
lemma lm062:
"inj_on fst P = inj_on snd (P^-1)"
using lm060 flip_conv by (metis converse_converse inj_on_imageI lm059)
lemma sumPairsInverse:
assumes "runiq (P^-1)"
shows "sum (f ∘ snd) P = sum f (Range P)"
using assms lm062 converse_converse rightUniqueInjectiveOnFirst rightUniqueInjectiveOnFirst
sum.reindex snd_eq_Range
by metis
lemma notEmptyFinestpart:
assumes "X ≠ {}"
shows "finestpart X ≠ {}"
using assms finestpart_def by blast
lemma lm063:
assumes "inj_on g X"
shows "sum f (g`X) = sum (f ∘ g) X"
using assms by (metis sum.reindex)
lemma functionOnFirstEqualsSecond:
assumes "runiq R" "z ∈ R"
shows "R,,(fst z) = snd z"
using assms by (metis rightUniquePair surjective_pairing)
lemma lm064:
assumes "runiq R"
shows "sum (toFunction R) (Domain R) = sum snd R"
using assms toFunction_def sum.reindex_cong functionOnFirstEqualsSecond
rightUniqueInjectiveOnFirst
by (metis (no_types) fst_eq_Domain)
corollary lm065:
assumes "runiq (f||X)"
shows "sum (toFunction (f||X)) (X ∩ Domain f) = sum snd (f||X)"
using assms lm064 by (metis Int_commute restrictedDomain)
lemma lm066:
"Range (R outside X) = R``((Domain R) - X)"
by (metis Diff_idemp ImageE Range.intros Range_outside_sub_Image_Domain lm041
lm042 order_class.order.antisym subsetI)
lemma lm067:
"(R||X) `` X = R``X"
using Int_absorb doubleRestriction restrictedRange by metis
lemma lm068:
assumes "x ∈ Domain (f||X)"
shows "(f||X)``{x} = f``{x}"
using assms doubleRestriction restrictedRange Int_empty_right Int_iff
Int_insert_right_if1 restrictedDomain
by metis
lemma lm069:
assumes "x ∈ X ∩ Domain f" "runiq (f||X)"
shows "(f||X),,x = f,,x"
using assms doubleRestriction restrictedRange Int_empty_right Int_iff Int_insert_right_if1
eval_rel.simps
by metis
lemma lm070:
assumes "runiq (f||X)"
shows "sum (toFunction (f||X)) (X ∩ Domain f) = sum (toFunction f) (X ∩ Domain f)"
using assms sum.cong lm069 toFunction_def by metis
corollary sumRestrictedToDomainInvariant:
assumes "runiq (f||X)"
shows "sum (toFunction f) (X ∩ Domain f) = sum snd (f||X)"
using assms lm065 lm070 by fastforce
corollary sumRestrictedOnFunction:
assumes "runiq (f||X)"
shows "sum (toFunction (f||X)) (X ∩ Domain f) = sum snd (f||X)"
using assms lm064 restrictedDomain Int_commute by metis
lemma cardFinestpart:
"card (finestpart X) = card X"
using finestpart_def by (metis (lifting) card_image inj_on_inverseI the_elem_eq)
corollary lm071:
"finestpart {} = {} & card ∘ finestpart = card"
using cardFinestpart finestpart_def by fastforce
lemma finiteFinestpart:
"finite (finestpart X) = finite X"
using finestpart_def lm071
by (metis card_eq_0_iff empty_is_image finite.simps cardFinestpart)
lemma lm072:
"finite ∘ finestpart = finite"
using finiteFinestpart by fastforce
lemma finestpartSubset:
assumes "X ⊆ Y"
shows "finestpart X ⊆ finestpart Y"
using assms finestpart_def by (metis image_mono)
corollary lm073:
assumes "x ∈ X"
shows "finestpart x ⊆ finestpart (⋃ X)"
using assms finestpartSubset by (metis Union_upper)
lemma lm074:
"⋃ (finestpart ` XX) ⊆ finestpart (⋃ XX)"
using finestpart_def lm073 by force
lemma lm075:
"⋃ (finestpart ` XX) ⊇ finestpart (⋃ XX)"
(is "?L ⊇ ?R")
unfolding finestpart_def using finestpart_def by auto
corollary commuteUnionFinestpart:
"⋃ (finestpart ` XX) = finestpart (⋃ XX)"
using lm074 lm075 by fast
lemma unionImage:
assumes "runiq a"
shows "{(x, {y})| x y. y ∈ ⋃ (a``{x}) & x ∈ Domain a} =
{(x, {y})| x y. y ∈ a,,x & x ∈ Domain a}"
using assms Image_runiq_eq_eval
by (metis (lifting, no_types) cSup_singleton)
lemma lm076:
assumes "runiq P"
shows "card (Domain P) = card P"
using assms rightUniqueInjectiveOnFirst card_image by (metis Domain_fst)
lemma finiteDomainImpliesFinite:
assumes "runiq f"
shows "finite (Domain f) = finite f"
using assms Domain_empty_iff card_eq_0_iff finite.emptyI lm076 by metis
lemma sumCurry:
"sum ((curry f) x) Y = sum f ({x} × Y)"
proof -
let ?f="% y. (x, y)" let ?g="(curry f) x" let ?h=f
have "inj_on ?f Y" by (metis(no_types) Pair_inject inj_onI)
moreover have "{x} × Y = ?f ` Y" by fast
moreover have "∀ y. y ∈ Y ⟶ ?g y = ?h (?f y)" by simp
ultimately show ?thesis using sum.reindex_cong by metis
qed
lemma lm077:
"sum (%y. f (x,y)) Y = sum f ({x}×Y)"
using sumCurry Sigma_cong curry_def sum.cong by fastforce
corollary lm078:
assumes "finite X"
shows "sum f X = sum f (X-Y) + (sum f (X ∩ Y))"
using assms Diff_iff IntD2 Un_Diff_Int finite_Un inf_commute sum.union_inter_neutral
by metis
lemma lm079:
"(P +* Q)``(Domain Q∩X) = Q``(Domain Q∩X)"
unfolding paste_def Outside_def Image_def Domain_def by blast
corollary lm080:
"(P +* Q)``(X∩(Domain Q)) = Q``X"
using Int_commute lm079 by (metis lm017)
corollary lm081:
assumes "X ∩ (Domain Q) = {}"
shows "(P +* Q) `` X = (P outside (Domain Q))`` X"
using assms paste_def by fast
lemma lm082:
assumes "X∩Y = {}"
shows "(P outside Y)``X=P``X"
using assms Outside_def by blast
corollary lm083:
assumes "X∩ (Domain Q) = {}"
shows "(P +* Q)``X=P``X"
using assms lm081 lm082 by metis
lemma lm084:
assumes "finite X" "finite Y" "card(X∩Y) = card X"
shows "X ⊆ Y"
using assms by (metis Int_lower1 Int_lower2 card_seteq order_refl)
lemma cardinalityIntersectionEquality:
assumes "finite X" "finite Y" "card X = card Y"
shows "(card (X∩Y) = card X) = (X = Y)"
using assms lm084 by (metis card_seteq le_iff_inf order_refl)
lemma lm085:
assumes "P xx"
shows "{(x,f x)| x. P x},,xx = f xx"
proof -
let ?F="{(x,f x)| x. P x}" let ?X="?F``{xx}"
have "?X={f xx}" using Image_def assms by blast thus ?thesis by fastforce
qed
lemma graphEqImage:
assumes "x ∈ X"
shows "graph X f,,x = f x"
unfolding graph_def using assms lm085 by (metis (mono_tags) Gr_def)
lemma lm086:
"Graph f,,x = f x"
using UNIV_I graphEqImage lm005 by (metis(no_types))
lemma lm087:
"toFunction (Graph f) = f" (is "?L=_")
proof -
{fix x have "?L x=f x" unfolding toFunction_def lm086 by metis}
thus ?thesis by blast
qed
lemma lm088:
"R outside X ⊆ R"
by (metis outside_union_restrict subset_Un_eq sup_left_idem)
lemma lm089:
"Range(f outside X) ⊇ (Range f)-(f``X)"
using Outside_def by blast
lemma lm090:
assumes "runiq P"
shows "(P¯``((Range P)-Y)) ∩ ((P¯)``Y) = {}"
using assms rightUniqueFunctionAfterInverse by blast
lemma lm091:
assumes "runiq (P¯)"
shows "(P``((Domain P) - X)) ∩ (P``X) = {}"
using assms rightUniqueFunctionAfterInverse by fast
lemma lm092:
assumes "runiq f" "runiq (f^-1)"
shows "Range(f outside X) ⊆ (Range f)-(f``X)"
using assms Diff_triv lm091 lm066 Diff_iff ImageE Range_iff subsetI by metis
lemma rangeOutside:
assumes "runiq f" "runiq (f^-1)"
shows "Range(f outside X) = (Range f)-(f``X)"
using assms lm089 lm092 by (metis order_class.order.antisym)
lemma unionIntersectionEmpty:
"(∀x∈X. ∀y∈Y. x∩y = {}) = ((⋃X)∩(⋃ Y)={})"
by blast
lemma setEqualityAsDifference:
"{x}-{y} = {} = (x = y)"
by auto
lemma lm093:
assumes "R ≠ {}" "Domain R ∩ X ≠ {}"
shows "R``X ≠ {}"
using assms by blast
lemma lm095:
"R ⊆ (Domain R) × (Range R)"
by auto
lemma finiteRelationCharacterization:
"(finite (Domain Q) & finite (Range Q)) = finite Q"
using rev_finite_subset finite_SigmaI lm095 finite_Domain finite_Range by metis
lemma familyUnionFiniteEverySetFinite:
assumes "finite (⋃ XX)"
shows "∀X ∈ XX. finite X"
using assms by (metis Union_upper finite_subset)
lemma lm096:
assumes "runiq f" "X ⊆ (f^-1)``Y"
shows "f``X ⊆ Y"
using assms rightUniqueFunctionAfterInverse by (metis Image_mono order_refl subset_trans)
lemma lm097:
assumes "y ∈ f``{x}" "runiq f"
shows "f,,x = y"
using assms by (metis Image_singleton_iff rightUniquePair)
subsection ‹Indicator function in set-theoretical form.›
abbreviation
"Outside' X f == f outside X"
abbreviation
"Chi X Y == (Y × {0::nat}) +* (X × {1})"
notation Chi (infix ‹<||› 80)
abbreviation
"chii X Y == toFunction (X <|| Y)"
notation chii (infix ‹<|› 80)
abbreviation
"chi X == indicator X"
lemma lm098:
"runiq (X <|| Y)"
by (rule lm014)
lemma lm099:
assumes "x ∈ X"
shows "1 ∈ (X <|| Y) `` {x}"
using assms toFunction_def paste_def Outside_def runiq_def lm014 by blast
lemma lm100:
assumes "x ∈ Y-X"
shows "0 ∈ (X <|| Y) `` {x}"
using assms toFunction_def paste_def Outside_def runiq_def lm014 by blast
lemma lm101:
assumes "x ∈ X ∪ Y"
shows "(X <|| Y),,x = chi X x" (is "?L=?R")
using assms lm014 lm099 lm100 lm097
by (metis DiffI Un_iff indicator_simps(1) indicator_simps(2))
lemma lm102:
assumes "x ∈ X ∪ Y"
shows "(X <| Y) x = chi X x"
using assms toFunction_def lm101 by metis
corollary lm103:
"sum (X <| Y) (X∪Y) = sum (chi X) (X∪Y)"
using lm102 sum.cong by metis
corollary lm104:
assumes "∀x∈X. f x = g x"
shows "sum f X = sum g X"
using assms by (metis (poly_guards_query) sum.cong)
corollary lm105:
assumes "∀x∈X. f x = g x" "Y⊆X"
shows "sum f Y = sum g Y"
using assms lm104 by (metis contra_subsetD)
corollary lm106:
assumes "Z ⊆ X ∪ Y"
shows "sum (X <| Y) Z = sum (chi X) Z"
proof -
have "∀x∈Z.(X<|Y) x=(chi X) x" using assms lm102 in_mono by metis
thus ?thesis using lm104 by blast
qed
corollary lm107:
"sum (chi X) (Z - X) = 0"
by simp
corollary lm108:
assumes "Z ⊆ X ∪ Y"
shows "sum (X <| Y) (Z - X) = 0"
using assms lm107 lm106 Diff_iff in_mono subsetI by metis
corollary lm109:
assumes "finite Z"
shows "sum (X <| Y) Z = sum (X <| Y) (Z - X) + (sum (X <| Y) (Z ∩ X))"
using lm078 assms by blast
corollary lm110:
assumes "Z ⊆ X ∪ Y" "finite Z"
shows "sum (X <| Y) Z = sum (X <| Y) (Z ∩ X)"
using assms lm078 lm108 comm_monoid_add_class.add_0 by metis
corollary lm111:
assumes "finite Z"
shows "sum (chi X) Z = card (X ∩ Z)"
using assms sum_indicator_eq_card by (metis Int_commute)
corollary lm112:
assumes "Z ⊆ X ∪ Y" "finite Z"
shows "sum (X <| Y) Z = card (Z ∩ X)"
using assms lm111 by (metis lm106 sum_indicator_eq_card)
corollary subsetCardinality:
assumes "Z ⊆ X ∪ Y" "finite Z"
shows "(sum (X <| Y) X) - (sum (X <| Y) Z) = card X - card (Z ∩ X)"
using assms lm112 by (metis Int_absorb2 Un_upper1 card.infinite equalityE sum.infinite)
corollary differenceSumVsCardinality:
assumes "Z ⊆ X ∪ Y" "finite Z"
shows "int (sum (X <| Y) X) - int (sum (X <| Y) Z) = int (card X) - int (card (Z ∩ X))"
using assms lm112 by (metis Int_absorb2 Un_upper1 card.infinite equalityE sum.infinite)
lemma lm113:
"int (n::nat) = real n"
by simp
corollary differenceSumVsCardinalityReal:
assumes "Z⊆X∪Y" "finite Z"
shows "real (sum (X <| Y) X) - real (sum (X <| Y) Z) =
real (card X) - real (card (Z ∩ X))"
using assms lm112 by (metis Int_absorb2 Un_upper1 card.infinite equalityE sum.infinite)
subsection ‹Lists›
lemma lm114:
assumes "∃ n ∈ {0..<size l}. P (l!n)"
shows "[n. n ← [0..<size l], P (l!n)] ≠ []"
using assms by auto
lemma lm115:
assumes "ll ∈ set (l::'a list)"
shows "∃ n∈ (nth l) -` (set l). ll=l!n"
using assms(1) by (metis in_set_conv_nth vimageI2)
lemma lm116:
assumes "ll ∈ set (l::'a list)"
shows "∃ n. ll=l!n & n < size l & n >= 0"
using assms in_set_conv_nth by (metis le0)
lemma lm117:
assumes "P -` {True} ∩ set l ≠ {}"
shows "∃ n ∈ {0..<size l}. P (l!n)"
using assms lm116 by fastforce
lemma nonEmptyListFiltered:
assumes "P -` {True} ∩ set l ≠ {}"
shows "[n. n ← [0..<size l], P (l!n)] ≠ []"
using assms filterpositions2_def lm117 lm114 by metis
lemma lm118:
"(nth l) ` set ([n. n ← [0..<size l], (%x. x∈X) (l!n)]) ⊆ X∩set l"
by force
corollary lm119:
"(nth l)` set (filterpositions2 (%x.(x∈X)) l) ⊆ X ∩ set l"
unfolding filterpositions2_def using lm118 by fast
lemma lm120:
"(n∈{0..<N}) = ((n::nat) < N)"
using atLeast0LessThan lessThan_iff by metis
lemma lm121:
assumes "X ⊆ {0..<size list}"
shows "(nth list)`X ⊆ set list"
using assms atLeastLessThan_def atLeast0LessThan lessThan_iff by auto
lemma lm122:
"set ([n. n ← [0..<size l], P (l!n)]) ⊆ {0..<size l}"
by force
lemma lm123:
"set (filterpositions2 pre list) ⊆ {0..<size list}"
using filterpositions2_def lm122 by metis
subsection ‹Computing all the permutations of a list›
abbreviation
"rotateLeft == rotate"
abbreviation
"rotateRight n l == rotateLeft (size l - (n mod (size l))) l"
abbreviation
"insertAt x l n == rotateRight n (x#(rotateLeft n l))"
fun perm2 where
"perm2 [] = (%n. [])" |
"perm2 (x#l) = (%n. insertAt x ((perm2 l) (n div (1+size l)))
(n mod (1+size l)))"
abbreviation
"takeAll P list == map (nth list) (filterpositions2 P list)"
lemma permutationNotEmpty:
assumes "l ≠ []"
shows "perm2 l n ≠ []"
using assms perm2.simps(2) rotate_is_Nil_conv by (metis neq_Nil_conv)
lemma lm124:
"set (takeAll P list) = ((nth list) ` set (filterpositions2 P list))"
by simp
corollary listIntersectionWithSet:
"set (takeAll (%x.(x∈X)) l) ⊆ (X ∩ set l)"
using lm119 lm124 by metis
corollary lm125:
"set (takeAll P list) ⊆ set list"
using lm123 lm124 lm121 by metis
lemma takeAllSubset:
"set (takeAll (%x. x∈ P) list) ⊆ P"
by (metis Int_subset_iff listIntersectionWithSet)
lemma lm126:
"set (insertAt x l n) = {x} ∪ set l"
by simp
lemma lm127:
"∀n. set (perm2 [] n) = set []"
by simp
lemma lm128:
assumes "∀n. (set (perm2 l n) = set l)"
shows "set (perm2 (x#l) n) = {x} ∪ set l"
using assms lm126 by force
corollary permutationInvariance:
"∀n. set (perm2 (l::'a list) n) = set l"
proof (induct l)
let ?P = "%l::('a list). (∀n. set (perm2 l n) = set l)"
show "?P []" using lm127 by force
fix x fix l
assume "?P l" then
show "?P (x#l)" by force
qed
corollary takeAllPermutation:
"set (perm2 (takeAll (%x.(x∈X)) l) n) ⊆ X ∩ set l"
using listIntersectionWithSet permutationInvariance by metis
abbreviation "subList l xl == map (nth l) (takeAll (%x. x ≤ size l) xl)"
subsection ‹A more computable version of @{term toFunction}.›
abbreviation "toFunctionWithFallback R fallback ==
(% x. if (R``{x} = {R,,x}) then (R,,x) else fallback)"
notation
toFunctionWithFallback (infix ‹Else› 75)
abbreviation sum' where
"sum' R X == sum (R Else 0) X"
lemma lm129:
assumes "runiq f" "x ∈ Domain f"
shows "(f Else 0) x = (toFunction f) x"
using assms by (metis Image_runiq_eq_eval toFunction_def)
lemma lm130:
assumes "runiq f"
shows "sum (f Else 0) (X∩(Domain f)) = sum (toFunction f) (X∩(Domain f))"
using assms sum.cong lm129 by fastforce
lemma lm131:
assumes "Y ⊆ f-`{0}"
shows "sum f Y = 0"
using assms by (metis rev_subsetD sum.neutral vimage_singleton_eq)
lemma lm132:
assumes "Y ⊆ f-`{0}" "finite X"
shows "sum f X = sum f (X-Y)"
using Int_lower2 add.comm_neutral assms(1) assms(2) lm078 lm131 order_trans
by (metis (no_types))
lemma lm133:
"-(Domain f) ⊆ (f Else 0)-`{0}"
by fastforce
corollary lm134:
assumes "finite X"
shows "sum (f Else 0) X = sum (f Else 0) (X∩Domain f)"
proof -
have "X∩Domain f=X-(-Domain f)" by simp
thus ?thesis using assms lm133 lm132 by fastforce
qed
corollary lm135:
assumes "finite X"
shows "sum (f Else 0) (X∩Domain f) = sum (f Else 0) X"
(is "?L=?R")
proof -
have "?R=?L" using assms by (rule lm134)
thus ?thesis by simp
qed
corollary lm136:
assumes "finite X" "runiq f"
shows "sum (f Else 0) X = sum (toFunction f) (X∩Domain f)"
(is "?L=?R")
proof -
have "?R = sum (f Else 0) (X∩Domain f) " using assms(2) lm130 by fastforce
moreover have "... = ?L" using assms(1) by (rule lm135)
ultimately show ?thesis by presburger
qed
lemma lm137:
"sum (f Else 0) X = sum' f X"
by fast
corollary lm138:
assumes "finite X" "runiq f"
shows "sum (toFunction f) (X∩Domain f) = sum' f X"
using assms lm137 lm136 by fastforce
lemma lm139:
"argmax (sum' b) = (argmax ∘ sum') b"
by simp
lemma domainConstant:
"Domain (Y × {0::nat}) = Y & Domain (X × {1}) = X"
by blast
lemma domainCharacteristicFunction:
"Domain (X <|| Y) = X ∪ Y"
using domainConstant paste_Domain sup_commute by metis
lemma functionEquivalenceOnSets:
assumes "∀x ∈ X. f x = g x"
shows "f`X = g`X"
using assms by (metis image_cong)
subsection ‹Cardinalities of sets.›
lemma lm140:
assumes "runiq R" "runiq (R^-1)"
shows "(R``A) ∩ (R``B) = R``(A∩B)"
using assms rightUniqueInjectiveOnFirst converse_Image by force
lemma intersectionEmptyRelationIntersectionEmpty:
assumes "runiq (R^-1)" "runiq R" "X1 ∩ X2 = {}"
shows "(R``X1) ∩ (R``X2) = {}"
using assms by (metis disj_Domain_imp_disj_Image inf_assoc inf_bot_right)
lemma lm141:
assumes "runiq f" "trivial Y"
shows "trivial (f `` (f^-1 `` Y))"
using assms by (metis rightUniqueFunctionAfterInverse trivial_subset)
lemma lm142:
assumes "trivial X"
shows "card (Pow X)∈{1,2}"
using trivial_empty_or_singleton card_Pow Pow_empty assms trivial_implies_finite
cardinalityOneTheElemIdentity power_one_right the_elem_eq
by (metis insert_iff)
lemma lm143:
assumes "card (Pow A) = 1"
shows "A = {}"
using assms by (metis Pow_bottom Pow_top cardinalityOneTheElemIdentity singletonD)
lemma lm144:
"(¬ (finite A)) = (card (Pow A) = 0)"
by auto
corollary lm145:
"(finite A) = (card (Pow A) ≠ 0)"
using lm144 by metis
lemma lm146:
assumes "card (Pow A) ≠ 0"
shows "card A=floor_log (card (Pow A))"
using assms floor_log_power card_Pow by (metis card.infinite finite_Pow_iff)
lemma log_2 [simp]:
"floor_log 2 = 1"
using floor_log_power [of 1] by simp
lemma lm147:
assumes "card (Pow A) = 2"
shows "card A = 1"
using assms lm146 [of A] by simp
lemma lm148:
assumes "card (Pow X) = 1 ∨ card (Pow X) = 2"
shows "trivial X"
using assms trivial_empty_or_singleton lm143 lm147 cardinalityOneTheElemIdentity by metis
lemma lm149:
"trivial A = (card (Pow A) ∈ {1,2})"
using lm148 lm142 by blast
lemma lm150:
assumes "R ⊆ f" "runiq f" "Domain f = Domain R"
shows "runiq R"
using assms by (metis subrel_runiq)
lemma lm151:
assumes "f ⊆ g" "runiq g" "Domain f = Domain g"
shows "g ⊆ f"
using assms Domain_iff contra_subsetD runiq_wrt_ex1 subrelI
by (metis (full_types,opaque_lifting))
lemma lm152:
assumes "R ⊆ f" "runiq f" "Domain f ⊆ Domain R"
shows "f = R"
using assms lm151 by (metis Domain_mono dual_order.antisym)
lemma lm153:
"graph X f = (Graph f) || X"
using inf_top.left_neutral lm005 domainOfGraph restrictedDomain lm152 graphIntersection
restriction_is_subrel subrel_runiq subset_iff
by (metis (erased, lifting))
lemma lm154:
"graph (X ∩ Y) f = (graph X f) || Y"
using doubleRestriction lm153 by metis
lemma restrictionVsIntersection:
"{(x, f x)| x. x ∈ X2} || X1 = {(x, f x)| x. x ∈ X2 ∩ X1}"
using graph_def lm154 by metis
lemma lm155:
assumes "runiq f" "X ⊆ Domain f"
shows "graph X (toFunction f) = (f||X)"
proof -
have "⋀v w. (v::'a set) ⊆ w ⟶ w ∩ v = v" by (simp add: Int_commute inf.absorb1)
thus "graph X (toFunction f) = f || X" by (metis assms(1) assms(2) doubleRestriction lm004 lm153)
qed
lemma lm156:
"(Graph f) `` X = f ` X"
unfolding Graph_def image_def by auto
lemma lm157:
assumes "X ⊆ Domain f" "runiq f"
shows "f``X = (eval_rel f)`X"
using assms lm156 by (metis restrictedRange lm153 lm155 toFunction_def)
lemma cardOneImageCardOne:
assumes "card A = 1"
shows "card (f`A) = 1"
using assms card_image card_image_le
proof -
have "finite (f`A)" using assms One_nat_def Suc_not_Zero card.infinite finite_imageI
by (metis(no_types))
moreover have "f`A ≠ {}" using assms by fastforce
moreover have "card (f`A) ≤ 1" using assms card_image_le One_nat_def Suc_not_Zero card.infinite
by (metis)
ultimately show ?thesis by (metis assms image_empty image_insert
cardinalityOneTheElemIdentity the_elem_eq)
qed
lemma cardOneTheElem:
assumes "card A = 1"
shows "the_elem (f`A) = f (the_elem A)"
using assms image_empty image_insert the_elem_eq by (metis cardinalityOneTheElemIdentity)
abbreviation
"swap f == curry ((case_prod f) ∘ flip)"
lemma lm158:
"finite X = (X ∈ range set)"
by (metis List.finite_set finite_list image_iff rangeI)
lemma lm159:
"finite = (%X. X∈range set)"
using lm158 by metis
lemma lm160:
"swap f = (%x. %y. f y x)"
by (metis comp_eq_dest_lhs curry_def flip_def fst_conv old.prod.case snd_conv)
subsection ‹Some easy properties on real numbers›
lemma lm161:
fixes a::real
fixes b c
shows "a*b - a*c=a*(b-c)"
by (metis real_scaleR_def real_vector.scale_right_diff_distrib)
lemma lm162:
fixes a::real
fixes b c
shows "a*b - c*b=(a-c)*b"
using lm161 by (metis mult.commute)
end