Theory Turing_Hoare
section ‹Hoare Rules for Turing Machines›
theory Turing_Hoare
imports Numerals
begin
subsection ‹Hoare\_halt and Hoare\_unhalt for total correctness›
subsubsection ‹Definition for Hoare\_halt and Hoare\_unhalt conditions›
type_synonym assert = "tape ⇒ bool"
definition
assert_imp :: "assert ⇒ assert ⇒ bool" (‹_ ↦ _› [0, 0] 100)
where
"P ↦ Q ≡ ∀l r. P (l, r) ⟶ Q (l, r)"
lemma refl_assert[intro, simp]:
"P ↦ P"
unfolding assert_imp_def by simp
fun
holds_for :: "(tape ⇒ bool) ⇒ config ⇒ bool" (‹_ holds'_for _› [100, 99] 100)
where
"P holds_for (s, l, r) = P (l, r)"
lemma is_final_holds[simp]:
assumes "is_final c"
shows "Q holds_for (steps c p n) = Q holds_for c"
using assms
by(induct n;cases c,auto)
definition
Hoare_halt :: "assert ⇒ tprog0 ⇒ assert ⇒ bool" (‹(⦃(1_)⦄/ (_)/ ⦃(1_)⦄)› 50)
where
"⦃P⦄ p ⦃Q⦄ ≡ (∀tap. P tap ⟶ (∃n. is_final (steps0 (1, tap) p n) ∧ Q holds_for (steps0 (1, tap) p n) ))"
definition
Hoare_unhalt :: "assert ⇒ tprog0 ⇒ bool" (‹(⦃(1_)⦄/ (_)) ↑› 50)
where
"⦃P⦄ p ↑ ≡ ∀tap. P tap ⟶ (∀ n . ¬(is_final (steps0 (1, tap) p n)))"
lemma Hoare_haltI:
assumes "⋀l r. P (l, r) ⟹ ∃n. is_final (steps0 (1, (l, r)) p n) ∧ Q holds_for (steps0 (1, (l, r)) p n)"
shows "⦃P⦄ p ⦃Q⦄"
unfolding Hoare_halt_def
using assms by auto
lemma Hoare_haltE:
assumes "⦃P⦄ p ⦃Q⦄"
and "P (l, r)"
shows "∃n. is_final (steps0 (1, (l, r)) p n) ∧ Q holds_for (steps0 (1, (l, r)) p n)"
using assms by (auto simp add: Hoare_halt_def)
lemma Hoare_unhaltI:
assumes "⋀l r n. P (l, r) ⟹ ¬ is_final (steps0 (1, (l, r)) p n)"
shows "⦃P⦄ p ↑"
unfolding Hoare_unhalt_def
using assms
by auto
lemma Hoare_unhaltE:
assumes "⦃P⦄ p ↑"
and "P tap"
shows "¬ (is_final (steps0 (1, tap) p n))"
proof
assume major: "is_final (steps0 (1, tap) p n)"
from assms(1) have "∀tap. P tap ⟶ (∀ n . ¬ (is_final (steps0 (1, tap) p n)))"
by (auto simp add: Hoare_unhalt_def)
with assms(2) have "(∀ n . ¬ (is_final (steps0 (1, tap) p n)))" by blast
with major show "False" by auto
qed
lemma Hoare_halt_iff:
"⦃P⦄ tm ⦃Q⦄
⟷
(∀l1 r1. P (l1,r1) ⟶ (∃stp l0 r0. steps0 (1, l1,r1) tm stp = (0,l0,r0) ∧ Q (l0,r0)))"
unfolding Hoare_halt_def
proof
show " ∀tap. P tap ⟶ (∃n. is_final (steps0 (1, tap) tm n) ∧ Q holds_for steps0 (1, tap) tm n)
⟹ ∀l1 r1. P (l1, r1) ⟶ (∃stp l0 r0. steps0 (1, l1, r1) tm stp = (0, l0, r0) ∧ Q (l0, r0))"
by (metis holds_for.elims(2) is_final.simps)
next
show "∀l1 r1. P (l1, r1) ⟶ (∃stp l0 r0. steps0 (1, l1, r1) tm stp = (0, l0, r0) ∧ Q (l0, r0))
⟹ ∀tap. P tap ⟶ (∃n. is_final (steps0 (1, tap) tm n) ∧ Q holds_for steps0 (1, tap) tm n)"
by (metis before_final holds_for.simps is_finalI old.prod.exhaust)
qed
lemma Hoare_halt_I0:
assumes "⋀l1 r1. P(l1, r1) ⟹ steps0 (1, l1, r1) tm stp = (0, l0, r0) ∧ Q (l0, r0)"
shows "⦃P⦄ tm ⦃Q⦄"
using assms Hoare_halt_iff[THEN iffD2]
by blast
lemma Hoare_halt_E0:
assumes major: "⦃P⦄ tm ⦃Q⦄"
and "P(l1, r1)"
shows "∃stp l0 r0. steps0 (1, l1, r1) tm stp = (0, l0, r0) ∧ Q(l0, r0)"
using assms Hoare_halt_iff[THEN iffD1]
by (auto simp add: Hoare_halt_def)
lemma partial_correctness_and_halts_imp_total_correctness':
assumes partial_corr: "(∃stp l1 r1. P (l1, r1) ∧ is_final (steps0 (1, l1,r1) tm stp)) ⟶ ⦃P⦄ tm ⦃Q⦄"
and halts: "(∃stp l1 r1. P (l1, r1) ∧ is_final (steps0 (1, l1,r1) tm stp))"
shows "⦃P⦄ tm ⦃Q⦄"
using halts partial_corr by blast
lemma partial_correctness_and_halts_imp_total_correctness:
assumes partial_corr: "∀l1 r1 stp. P (l1, r1) ∧ is_final (steps0 (1, l1,r1) tm stp) ⟶ ⦃P⦄ tm ⦃Q⦄"
and halts: "(∃stp l1 r1. P (l1, r1) ∧ is_final (steps0 (1, l1,r1) tm stp))"
shows "⦃P⦄ tm ⦃Q⦄"
using halts partial_corr by blast
lemma "( (∃stp l1 r1. P (l1, r1) ∧ is_final (steps0 (1, l1,r1) tm stp)) ⟶ ⦃P⦄ tm ⦃Q⦄ )
⟷
( ∀stp l1 r1. (P (l1, r1) ∧ is_final (steps0 (1, l1,r1) tm stp) ⟶ ⦃P⦄ tm ⦃Q⦄) )"
by blast
lemma Hoare_consequence:
assumes "P' ↦ P" "⦃P⦄ p ⦃Q⦄" "Q ↦ Q'"
shows "⦃P'⦄ p ⦃Q'⦄"
using assms
unfolding Hoare_halt_def assert_imp_def
by (metis holds_for.simps surj_pair)
subsubsection ‹Relation between Hoare\_halt and Hoare\_unhalt›
lemma Hoare_halt_impl_not_Hoare_unhalt:
assumes "⦃P⦄ p ⦃Q⦄" and "P tap"
shows "¬(⦃P⦄ p ↑)"
proof
assume "⦃P⦄ p ↑"
then have "∀tap. P tap ⟶ (∀ n . ¬ (is_final (steps0 (1, tap) p n)))"
by (auto simp add: Hoare_unhalt_def)
with ‹P tap› have L1: "(∀ n . ¬ (is_final (steps0 (1, tap) p n)))" by blast
from assms have "(∀tap. P tap ⟶ (∃n. is_final (steps0 (1, tap) p n) ∧ Q holds_for (steps0 (1, tap) p n) ))"
by (auto simp add: Hoare_halt_def)
with ‹P tap› have "(∃n. is_final (steps0 (1, tap) p n) ∧ Q holds_for (steps0 (1, tap) p n) )"
by blast
then obtain n where w_n: "is_final (steps0 (1, tap) p n) ∧ Q holds_for (steps0 (1, tap) p n)" by blast
then have "is_final (steps0 (1, tap) p n)" by auto
with L1 show False by auto
qed
lemma Hoare_unhalt_impl_not_Hoare_halt:
assumes "⦃P⦄ p ↑" and "P tap"
shows "¬(⦃P⦄ p ⦃Q⦄)"
proof
assume "⦃P⦄ p ⦃Q⦄"
then have
"(∀tap. P tap ⟶ (∃n. is_final (steps0 (1, tap) p n) ∧ Q holds_for (steps0 (1, tap) p n) ))"
by (auto simp add: Hoare_halt_def)
with ‹P tap› have "(∃n. is_final (steps0 (1, tap) p n) ∧ Q holds_for (steps0 (1, tap) p n) )"
by blast
then obtain n where w_n: "is_final (steps0 (1, tap) p n) ∧ Q holds_for (steps0 (1, tap) p n)" by blast
then have L1: "is_final (steps0 (1, tap) p n)" by auto
from assms have "∀tap. P tap ⟶ (∀ n . ¬ (is_final (steps0 (1, tap) p n)))"
by (auto simp add: Hoare_unhalt_def)
with ‹P tap› have "¬ (is_final (steps0 (1, tap) p n))" by blast
with L1 show False by auto
qed
subsubsection ‹Hoare\_halt and Hoare\_unhalt for composed Turing Machines›
lemma Hoare_plus_halt [case_names A_halt B_halt A_composable]:
assumes A_halt : "⦃P⦄ A ⦃Q⦄"
and B_halt : "⦃Q⦄ B ⦃S⦄"
and A_composable : "composable_tm (A, 0)"
shows "⦃P⦄ A |+| B ⦃S⦄"
proof(rule Hoare_haltI)
fix l r
assume h: "P (l, r)"
then obtain n1 l' r'
where "is_final (steps0 (1, l, r) A n1)"
and a1: "Q holds_for (steps0 (1, l, r) A n1)"
and a2: "steps0 (1, l, r) A n1 = (0, l', r')"
using A_halt unfolding Hoare_halt_def
by (metis is_final_eq surj_pair)
then obtain n2
where "steps0 (1, l, r) (A |+| B) n2 = (Suc (length A div 2), l', r')"
using A_composable by (rule_tac seq_tm_next)
moreover
from a1 a2 have "Q (l', r')" by (simp)
then obtain n3 l'' r''
where "is_final (steps0 (1, l', r') B n3)"
and b1: "S holds_for (steps0 (1, l', r') B n3)"
and b2: "steps0 (1, l', r') B n3 = (0, l'', r'')"
using B_halt unfolding Hoare_halt_def
by (metis is_final_eq surj_pair)
then have "steps0 (Suc (length A div 2), l', r') (A |+| B) n3 = (0, l'', r'')"
using A_composable by (rule_tac seq_tm_final)
ultimately show
"∃n. is_final (steps0 (1, l, r) (A |+| B) n) ∧ S holds_for (steps0 (1, l, r) (A |+| B) n)"
using b1 b2 by (rule_tac x = "n2 + n3" in exI) (simp)
qed
lemma Hoare_plus_unhalt [case_names A_halt B_unhalt A_composable]:
assumes A_halt: "⦃P⦄ A ⦃Q⦄"
and B_uhalt: "⦃Q⦄ B ↑"
and A_composable : "composable_tm (A, 0)"
shows "⦃P⦄ (A |+| B) ↑"
proof(rule_tac Hoare_unhaltI)
fix n l r
assume h: "P (l, r)"
then obtain n1 l' r'
where a: "is_final (steps0 (1, l, r) A n1)"
and b: "Q holds_for (steps0 (1, l, r) A n1)"
and c: "steps0 (1, l, r) A n1 = (0, l', r')"
using A_halt unfolding Hoare_halt_def
by (metis is_final_eq surj_pair)
then obtain n2 where eq: "steps0 (1, l, r) (A |+| B) n2 = (Suc (length A div 2), l', r')"
using A_composable by (rule_tac seq_tm_next)
then show "¬ is_final (steps0 (1, l, r) (A |+| B) n)"
proof(cases "n2 ≤ n")
case True
from b c have "Q (l', r')" by simp
then have "∀ n. ¬ is_final (steps0 (1, l', r') B n) "
using B_uhalt unfolding Hoare_unhalt_def by simp
then have "¬ is_final (steps0 (1, l', r') B (n - n2))" by auto
then obtain s'' l'' r''
where "steps0 (1, l', r') B (n - n2) = (s'', l'', r'')"
and "¬ is_final (s'', l'', r'')" by (metis surj_pair)
then have "steps0 (Suc (length A div 2), l', r') (A |+| B) (n - n2) = (s''+ length A div 2, l'', r'')"
using A_composable by (auto dest: seq_tm_second simp del: composable_tm.simps)
then have "¬ is_final (steps0 (1, l, r) (A |+| B) (n2 + (n - n2)))"
using A_composable by (simp only: steps_add eq) simp
then show "¬ is_final (steps0 (1, l, r) (A |+| B) n)"
using ‹n2 ≤ n› by simp
next
case False
then obtain n3 where "n = n2 - n3"
using diff_le_self le_imp_diff_is_add nat_le_linear
add.commute by metis
moreover
with eq show "¬ is_final (steps0 (1, l, r) (A |+| B) n)"
by (simp add: not_is_final[where ?n1.0="n2"])
qed
qed
subsection ‹Trailing Blanks on the left tape do not matter for Hoare\_halt›
text ‹The following theorems have major impact on the definition of Turing Computability.›
lemma Hoare_halt_add_Bks_left_tape_L1:
assumes "⦃ λtap. tap = ([], r)⦄ p ⦃ (λtap. ∃k l. tap = (Bk ↑ k, CR @ Bk ↑ l)) ⦄"
shows "∀z. ∃stp k l. (steps0 (1, Bk↑z,r) p stp) = (0, Bk ↑ k, CR @ Bk ↑ l)"
proof -
from assms
have "∃stp. is_final (steps0 (1, [], r) p stp) ∧ (λtap. ∃k l. tap = (Bk ↑ k, CR @ Bk ↑ l)) holds_for steps0 (1, [], r) p stp"
using Hoare_haltE[OF assms] by auto
then obtain stp where
w: "is_final (steps0 (1, [], r) p stp) ∧ (λtap. ∃k l. tap = (Bk ↑ k, CR @ Bk ↑ l)) holds_for steps0 (1, [], r) p stp" by blast
then have "∃k l. snd(steps0 (1, [], r) p stp) = (Bk ↑ k, CR @ Bk ↑ l)"
proof (cases " steps0 (1, [], r) p stp")
case (fields s' l' r')
then have "steps0 (1, [], r) p stp = (s', l', r')" .
then show ?thesis
using w holds_for.simps snd_conv by auto
qed
moreover from w have "fst (steps0 (1, [], r) p stp) = 0"
by (metis is_final_eq surjective_pairing)
ultimately have "∃stp k l. steps0 (1, [], r) p stp = (0, Bk ↑ k, CR @ Bk ↑ l)"
by (metis surjective_pairing)
then have "∀z. ∃stp k l. (steps0 (1, (Bk↑z, r)) p stp) = (0, Bk ↑ k, CR @ Bk ↑ l)"
using steps_left_tape_Nil_imp_All
by blast
then show ?thesis
by blast
qed
lemma Hoare_halt_add_Bks_left_tape_L2:
assumes "∀z. ∃stp k l. (steps0 (1, Bk↑z,r) p stp) = (0, Bk ↑ k, CR @ Bk ↑ l)"
shows "⦃(λtap. ∃z. tap = (Bk↑z, r))⦄ p ⦃ (λtap. (∃k l. tap = (Bk ↑ k, CR @ Bk ↑ l))) ⦄"
unfolding Hoare_halt_def
proof
fix tap
show "(∃z. tap = (Bk ↑ z, r)) ⟶ (∃n. is_final (steps0 (1, tap) p n) ∧
(λtap. ∃k l. tap = (Bk ↑ k, CR @ Bk ↑ l)) holds_for steps0 (1, tap) p n)"
proof
assume A: "∃z. tap = (Bk ↑ z, r)"
from assms have B: "⋀z. ∃stp k l. steps0 (1, Bk ↑ z, r) p stp = (0, Bk ↑ k, CR @ Bk ↑ l)" by blast
from A obtain z2 where w_z: "tap = (Bk ↑ z2, r)" by blast
from B obtain stp k l where w: "(steps0 (1, (Bk↑z2, r)) p stp) = (0, Bk ↑ k, CR @ Bk ↑ l)"
by blast
show "∃n. is_final (steps0 (1, tap) p n) ∧ (λtap. ∃k l. tap = (Bk ↑ k, CR @ Bk ↑ l)) holds_for steps0 (1, tap) p n"
proof
show "is_final (steps0 (1, tap) p stp) ∧ (λtap. ∃k l. tap = (Bk ↑ k, CR @ Bk ↑ l)) holds_for steps0 (1, tap) p stp"
proof
from w and w_z
show "is_final (steps0 (1, tap) p stp)" by (auto simp add: is_final_eq)
next
from w and w_z show "(λtap. ∃k l. tap = (Bk ↑ k, CR @ Bk ↑ l)) holds_for steps0 (1, tap) p stp"
by auto
qed
qed
qed
qed
theorem Hoare_halt_add_Bks_left_tape:
"⦃(λtap. tap = ([] , r))⦄ p ⦃ (λtap. (∃k l. tap = (Bk ↑ k, CR @ Bk ↑ l))) ⦄
⟹
∀z. ⦃(λtap. tap = (Bk↑z, r))⦄ p ⦃ (λtap. (∃k l. tap = (Bk ↑ k, CR @ Bk ↑ l))) ⦄"
using Hoare_halt_add_Bks_left_tape_L1 Hoare_halt_add_Bks_left_tape_L2
by (simp add: Hoare_haltI Hoare_halt_def Pair_inject old.prod.exhaust )
theorem Hoare_halt_del_Bks_left_tape:
"⦃(λtap. ∃z. tap = (Bk↑z, r))⦄ p ⦃ (λtap. (∃k l. tap = (Bk ↑ k, CR @ Bk ↑ l))) ⦄
⟹
⦃(λtap. tap = ([] , r))⦄ p ⦃ (λtap. (∃k l. tap = (Bk ↑ k, CR @ Bk ↑ l))) ⦄"
unfolding Hoare_halt_def
by auto
lemma is_final_del_Bks: "is_final (steps0 (s, Bk ↑ k, r) tm stp) ⟹ is_final (steps0 (s, [], r) tm stp)"
proof (cases k)
assume "is_final (steps0 (s, Bk ↑ k, r) tm stp)"
and "k=0"
case 0
then show ?thesis
using ‹is_final (steps0 (s, Bk ↑ k, r) tm stp)› replicate_0 by auto
next
fix nat
assume A: "is_final (steps0 (s, Bk ↑ k, r) tm stp)" and "k = Suc nat"
then have B: "0 <k" by auto
have "∃ l' r'. (steps0 (s, Bk ↑ k, r) tm stp) = (0, l', r')"
proof (cases "steps0 (s, Bk ↑ k, r) tm stp")
case (fields a b c)
then show ?thesis
using A is_final_eq by auto
qed
then obtain l' r' where w: "steps0 (s, Bk ↑ k, r) tm stp = (0, l', r')" by blast
then have "steps0 (s, []@Bk ↑ k, r) tm stp = (0, l', r')" by auto
with B have "∃zb CL'. l' = CL'@Bk↑zb ∧ steps0 (s,[], r) tm stp = (0,CL',r')"
using steps_left_tape_ShrinkBkCtx_arbitrary_CL
by auto
then obtain zb CL' where "l' = CL'@Bk↑zb ∧ steps0 (s,[], r) tm stp = (0,CL',r')" by blast
then show ?thesis by auto
qed
lemma Hoare_unhalt_add_Bks_left_tape_L1:
assumes "⦃λtap. tap = ([], r)⦄ p ↑"
shows "∀z. ⦃λtap. tap = (Bk ↑ z, r)⦄ p ↑"
proof -
from assms have "⋀stp. ¬ is_final (steps0 (1, [], r) p stp)"
using Hoare_unhaltE[OF assms] by auto
then have "⋀stp z. ¬ is_final (steps0 (1, Bk ↑ z, r) p stp)"
using is_final_del_Bks
by blast
then show ?thesis
by (simp add: Hoare_unhaltI Hoare_unhalt_def)
qed
subsection ‹Halt lemmas with respect to function mk\_composable0›
theorem Hoare_halt_tm_impl_Hoare_halt_mk_composable0_cell_list: "⦃λtap. tap = ([], cl)⦄ tm ⦃Q⦄ ⟹ ⦃λtap. tap = ([], cl)⦄ mk_composable0 tm ⦃Q⦄"
unfolding Hoare_halt_def
proof -
assume A: "∀tap. (tap = ([], cl)) ⟶ (∃n. is_final (steps0 (1, tap) tm n) ∧ Q holds_for steps0 (1, tap) tm n)"
show "∀tap. (tap = ([], cl)) ⟶ (∃n. is_final (steps0 (1, tap) (mk_composable0 tm) n) ∧ Q holds_for steps0 (1, tap) (mk_composable0 tm) n)"
proof
fix tap
show "(tap = ([], cl)) ⟶ (∃n. is_final (steps0 (1, tap) (mk_composable0 tm) n) ∧ Q holds_for steps0 (1, tap) (mk_composable0 tm) n)"
proof
assume "tap = ([], cl)"
with A have "(∃n. is_final (steps0 (1, tap) tm n) ∧ Q holds_for steps0 (1, tap) tm n)"
by auto
then obtain n where w_n: "is_final (steps0 (1, tap) tm n) ∧ Q holds_for steps0 (1, tap) tm n"
by blast
with ‹tap = ([], cl)› have w_n': "is_final (steps0 (1, [], cl) tm n) ∧ Q holds_for steps0 (1, [], cl) tm n" by auto
have "∃n. is_final (steps0 (1, [], cl) (mk_composable0 tm) n) ∧ Q holds_for steps0 (1, [], cl) (mk_composable0 tm) n"
proof (cases "∀stp. steps0 (1,[],cl) (mk_composable0 tm) stp = steps0 (1,[], cl) tm stp")
case True
with w_n' have "is_final (steps0 (1, [], cl) (mk_composable0 tm) n) ∧ Q holds_for steps0 (1, [], cl) (mk_composable0 tm) n" by auto
then show ?thesis by auto
next
case False
then have "∃stp. steps0 (1, [], cl) (mk_composable0 tm) stp ≠ steps0 (1, [], cl) tm stp" by blast
then obtain stp where w_stp: "steps0 (1, [], cl) (mk_composable0 tm) stp ≠ steps0 (1, [], cl) tm stp" by blast
show "∃m. is_final (steps0 (1, [], cl) (mk_composable0 tm) m) ∧ Q holds_for steps0 (1, [], cl) (mk_composable0 tm) m"
proof -
from w_stp have F0: "0 < stp ∧
(∃fl fr.
snd (steps0 (1, [], cl) tm stp) = (fl, fr) ∧
(∀i < stp. steps0 (1, [], cl) (mk_composable0 tm) i = steps0 (1, [], cl) tm i) ∧
(∀j > stp. steps0 (1, [], cl) tm (j) = (0, fl, fr) ∧
steps0 (1, [], cl) (mk_composable0 tm) j =(0, fl, fr)))"
by (rule mk_composable0_tm_at_most_one_diff')
from F0 have "0 < stp" by auto
from F0 obtain fl fr where w_fl_fr: "snd (steps0 (1, [], cl) tm stp) = (fl, fr) ∧
(∀i < stp. steps0 (1, [], cl) (mk_composable0 tm) i = steps0 (1, [], cl) tm i) ∧
(∀j > stp. steps0 (1, [], cl) tm (j) = (0, fl, fr) ∧
steps0 (1, [], cl) (mk_composable0 tm) j =(0, fl, fr))" by blast
have "steps0 (1, [], cl) tm (stp+1) = steps0 (1, [], cl) tm n"
proof (cases "steps0 (1, [], cl) tm n")
case (fields fsn fln frn)
then have "steps0 (1, [], cl) tm n = (fsn, fln, frn)" .
with w_n' have "is_final (fsn, fln, frn)" by auto
with is_final_eq have "fsn=0" by auto
with ‹steps0 (1, [], cl) tm n = (fsn, fln, frn)› have "steps0 (1, [], cl) tm n = (0, fln, frn)" by auto
show "steps0 (1, [], cl) tm (stp + 1) = steps0 (1, [], cl) tm n"
proof (cases "n ≤ stp+1")
case True
then have "n ≤ stp + 1" .
show ?thesis
proof -
from ‹steps0 (1, [], cl) tm n = (0, fln, frn)› and ‹n ≤ stp + 1› have "steps0 (1, [], cl) tm (stp+1) = (0, fln, frn)"
by (rule stable_config_after_final_ge_2')
with ‹fsn=0› and ‹steps0 (1, [], cl) tm n = (fsn, fln, frn)› show ?thesis by auto
qed
next
case False
then have "stp + 1 ≤ n" by arith
show ?thesis
proof -
from w_fl_fr have "steps0 (1, [], cl) tm (stp+1) = (0, fl, fr)" by auto
have "steps0 (1, [], cl) tm n = (0, fl, fr)"
proof (rule stable_config_after_final_ge_2')
from ‹steps0 (1, [], cl) tm (stp+1) = (0, fl, fr)› show "steps0 (1, [], cl) tm (stp+1) = (0, fl, fr)" by auto
next
from ‹stp + 1 ≤ n› show "stp + 1 ≤ n" .
qed
with ‹steps0 (1, [], cl) tm (stp+1) = (0, fl, fr)› show ?thesis by auto
qed
qed
qed
with w_n' have "is_final(steps0 (1, [], cl) tm (stp+1)) ∧ Q holds_for steps0 (1, [], cl) tm (stp+1)" by auto
moreover from w_fl_fr have "steps0 (1, [], cl) tm (stp+1) = steps0 (1, [], cl) (mk_composable0 tm) (stp+1)" by auto
ultimately have "is_final(steps0 (1, [], cl) (mk_composable0 tm) (stp+1)) ∧ Q holds_for steps0 (1, [], cl) (mk_composable0 tm) (stp+1)" by auto
then show ?thesis by blast
qed
qed
with ‹tap = ([], cl)› show "∃n. is_final (steps0 (1, tap) (mk_composable0 tm) n) ∧ Q holds_for steps0 (1, tap) (mk_composable0 tm) n" by auto
qed
qed
qed
theorem Hoare_halt_tm_impl_Hoare_halt_mk_composable0_cell_list_rev: "⦃λtap. tap = ([], cl)⦄ mk_composable0 tm ⦃Q⦄ ⟹ ⦃λtap. tap = ([], cl)⦄ tm ⦃Q⦄"
unfolding Hoare_halt_def
proof -
assume A: "∀tap. tap = ([], cl) ⟶ (∃n. is_final (steps0 (1, tap) (mk_composable0 tm) n) ∧ Q holds_for steps0 (1, tap) (mk_composable0 tm) n)"
show "∀tap. tap = ([], cl) ⟶ (∃n. is_final (steps0 (1, tap) tm n) ∧ Q holds_for steps0 (1, tap) tm n)"
proof
fix tap
show "(tap = ([], cl) ⟶ (∃n. is_final (steps0 (1, tap) tm n) ∧ Q holds_for steps0 (1, tap) tm n))"
proof
assume "tap = ([], cl)"
with A have "(∃n. is_final (steps0 (1, tap) (mk_composable0 tm) n) ∧ Q holds_for steps0 (1, tap) (mk_composable0 tm) n)"
by auto
then obtain n where w_n: "is_final (steps0 (1, tap) (mk_composable0 tm) n) ∧ Q holds_for steps0 (1, tap) (mk_composable0 tm) n"
by blast
with ‹tap = ([], cl)› have w_n': "is_final (steps0 (1, [], cl) (mk_composable0 tm) n) ∧ Q holds_for steps0 (1, [], cl) (mk_composable0 tm) n" by auto
have "∃n. is_final (steps0 (1, [], cl) tm n) ∧ Q holds_for steps0 (1, [], cl) tm n"
proof (cases "∀stp. steps0 (1,[],cl) (mk_composable0 tm) stp = steps0 (1,[], cl) tm stp")
case True
with w_n' have "is_final (steps0 (1, [], cl) tm n) ∧ Q holds_for steps0 (1, [], cl) tm n" by auto
then show ?thesis by auto
next
case False
then have "∃stp. steps0 (1, [], cl) (mk_composable0 tm) stp ≠ steps0 (1, [], cl) tm stp" by blast
then obtain stp where w_stp: "steps0 (1, [], cl) (mk_composable0 tm) stp ≠ steps0 (1, [], cl) tm stp" by blast
show "∃m. is_final (steps0 (1, [], cl) tm m) ∧ Q holds_for steps0 (1, [], cl) tm m"
proof -
from w_stp have F0: "0 < stp ∧
(∃fl fr.
snd (steps0 (1, [], cl) tm stp) = (fl, fr) ∧
(∀i < stp. steps0 (1, [], cl) (mk_composable0 tm) i = steps0 (1, [], cl) tm i) ∧
(∀j > stp. steps0 (1, [], cl) tm (j) = (0, fl, fr) ∧
steps0 (1, [], cl) (mk_composable0 tm) j =(0, fl, fr)))"
by (rule mk_composable0_tm_at_most_one_diff')
from F0 have "0 < stp" by auto
from F0 obtain fl fr where w_fl_fr: "snd (steps0 (1, [], cl) tm stp) = (fl, fr) ∧
(∀i < stp. steps0 (1, [], cl) (mk_composable0 tm) i = steps0 (1, [], cl) tm i) ∧
(∀j > stp. steps0 (1, [], cl) tm (j) = (0, fl, fr) ∧
steps0 (1, [], cl) (mk_composable0 tm) j =(0, fl, fr))" by blast
have "steps0 (1, [], cl) (mk_composable0 tm) (stp+1) = steps0 (1, [], cl) (mk_composable0 tm) n"
by (metis One_nat_def add_Suc_right is_final.elims(2) less_add_one nat_le_linear stable_config_after_final_ge w_fl_fr w_n')
with w_n' have "is_final(steps0 (1, [], cl) (mk_composable0 tm) (stp+1)) ∧ Q holds_for steps0 (1, [], cl) (mk_composable0 tm) (stp+1)" by auto
moreover from w_fl_fr have "steps0 (1, [], cl) tm (stp+1) = steps0 (1, [], cl) (mk_composable0 tm) (stp+1)" by auto
ultimately have "is_final(steps0 (1, [], cl) tm (stp+1)) ∧ Q holds_for steps0 (1, [], cl) tm (stp+1)" by auto
then show ?thesis by blast
qed
qed
with ‹tap = ([], cl)› show "∃n. is_final (steps0 (1, tap) tm n) ∧ Q holds_for steps0 (1, tap) tm n" by auto
qed
qed
qed
lemma Hoare_unhalt_tm_impl_Hoare_unhalt_mk_composable0_cell_list: "(⦃λtap. tap = ([], cl )⦄ tm ↑) ⟹ (⦃λtap. tap = ([], cl) ⦄ (mk_composable0 tm) ↑)"
unfolding Hoare_unhalt_def
proof -
assume A: " ∀tap. (tap = ([], cl)) ⟶ (∀n. ¬ is_final (steps0 (1, tap) tm n))"
show "∀tap. (tap = ([], cl)) ⟶ (∀n. ¬ is_final (steps0 (1, tap) (mk_composable0 tm) n))"
proof
fix tap
show "(tap = ([], cl)) ⟶ (∀n. ¬ is_final (steps0 (1, tap) (mk_composable0 tm) n))"
proof
assume "tap = ([], cl)"
with A have B: "∀n. ¬ is_final (steps0 (1, tap) tm n)" by auto
show "∀n. ¬ is_final (steps0 (1, tap) (mk_composable0 tm) n)"
proof (cases "∀stp. steps0 (1,[], cl) (mk_composable0 tm) stp = steps0 (1,[], cl) tm stp")
case True
then have "∀stp. steps0 (1, [], cl) (mk_composable0 tm) stp = steps0 (1, [], cl) tm stp" .
show ?thesis
proof
fix n
from ‹∀stp. steps0 (1, [], cl) (mk_composable0 tm) stp = steps0 (1, [], cl) tm stp›
have "steps0 (1, [], cl) (mk_composable0 tm) n = steps0 (1, [], cl) tm n" by auto
moreover from B and ‹tap = ([], cl)› have "¬ is_final (steps0 (1, [], cl) tm n)" by auto
ultimately have "¬ is_final (steps0 (1, [], cl) (mk_composable0 tm) n)" by auto
with ‹tap = ([], cl)› show "¬ is_final (steps0 (1, tap) (mk_composable0 tm) n)" by auto
qed
next
case False
then have "¬ (∀stp. steps0 (1, [], cl) (mk_composable0 tm) stp = steps0 (1, [], cl) tm stp)" .
then have "∃stp. steps0 (1, [], cl) (mk_composable0 tm) stp ≠ steps0 (1, [], cl) tm stp" by blast
then obtain stp where w_stp: "steps0 (1, [], cl) (mk_composable0 tm) stp ≠ steps0 (1, [], cl) tm stp" by blast
show "∀n. ¬ is_final (steps0 (1, tap) (mk_composable0 tm) n)"
proof -
from w_stp have F0: "0 < stp ∧
(∃fl fr.
snd (steps0 (1, [], cl) tm stp) = (fl, fr) ∧
(∀i < stp. steps0 (1, [], cl) (mk_composable0 tm) i = steps0 (1, [], cl) tm i) ∧
(∀j > stp. steps0 (1, [], cl) tm (j) = (0, fl, fr) ∧
steps0 (1, [], cl) (mk_composable0 tm) j =(0, fl, fr)))"
by (rule mk_composable0_tm_at_most_one_diff')
then have "(∃fl fr.
snd (steps0 (1, [], cl) tm stp) = (fl, fr) ∧
(∀i < stp. steps0 (1, [], cl) (mk_composable0 tm) i = steps0 (1, [], cl) tm i) ∧
(∀j > stp. steps0 (1, [], cl) tm (j) = (0, fl, fr) ∧
steps0 (1, [], cl) (mk_composable0 tm) j =(0, fl, fr)))" by auto
then obtain fl fr where w_fl_fr: "snd (steps0 (1, [], cl) tm stp) = (fl, fr) ∧
(∀i < stp. steps0 (1, [], cl) (mk_composable0 tm) i = steps0 (1, [], cl) tm i) ∧
(∀j > stp. steps0 (1, [], cl) tm (j) = (0, fl, fr) ∧
steps0 (1, [], cl) (mk_composable0 tm) j =(0, fl, fr))" by blast
then have "steps0 (1, [], cl) tm (stp+1) = (0, fl, fr)" by auto
then have "is_final (steps0 (1, [], cl) tm (stp+1))" by auto
with ‹tap = ([], cl)› have "is_final (steps0 (1, tap) tm (stp+1))" by auto
moreover from B have "¬ is_final (steps0 (1, tap) tm (stp+1))" by blast
ultimately have False by auto
then show ?thesis by auto
qed
qed
qed
qed
qed
corollary Hoare_halt_tm_impl_Hoare_halt_mk_composable0: "⦃λtap. tap = ([]::cell list, <nl>)⦄ tm ⦃Q⦄ ⟹ ⦃λtap. tap = ([], <nl>)⦄ mk_composable0 tm ⦃Q⦄"
using Hoare_halt_tm_impl_Hoare_halt_mk_composable0_cell_list by auto
corollary Hoare_unhalt_tm_impl_Hoare_unhalt_mk_composable0: "(⦃λtap. tap = ([], <nl>)⦄ tm ↑) ⟹ (⦃λtap. tap = ([], <nl>)⦄ (mk_composable0 tm) ↑)"
using Hoare_unhalt_tm_impl_Hoare_unhalt_mk_composable0_cell_list by auto
corollary Hoare_halt_tm_impl_Hoare_halt_mk_composable0_pair:
"⦃λtap. tap = ([], <(nl1,nl2)>)⦄ tm ⦃Q⦄ ⟹ ⦃λtap. tap = ([], <(nl1,nl2)>)⦄ mk_composable0 tm ⦃Q⦄"
using Hoare_halt_tm_impl_Hoare_halt_mk_composable0_cell_list by auto
corollary Hoare_unhalt_tm_impl_Hoare_unhalt_mk_composable0_pair: "(⦃λtap. tap = ([], <(nl1, nl2)>)⦄ tm ↑) ⟹ (⦃λtap. tap = ([], <(nl1,nl2)>)⦄ (mk_composable0 tm) ↑)"
using Hoare_unhalt_tm_impl_Hoare_unhalt_mk_composable0_cell_list by auto
section ‹The Halt Lemma: no infinite descend›
lemma halt_lemma:
"⟦wf LE; ∀n. (¬ P (f n) ⟶ (f (Suc n), (f n)) ∈ LE)⟧ ⟹ ∃n. P (f n)"
by (metis wf_iff_no_infinite_down_chain)
end