Theory utp_hoare
section ‹ Relational Hoare calculus ›
theory utp_hoare
imports
utp_rel_laws
utp_theory
begin
subsection ‹ Hoare Triple Definitions and Tactics ›
definition hoare_r :: "'α cond ⇒ 'α hrel ⇒ 'α cond ⇒ bool" (‹⦃_⦄/ _/ ⦃_⦄⇩u›) where
"⦃p⦄Q⦃r⦄⇩u = ((⌈p⌉⇩< ⇒ ⌈r⌉⇩>) ⊑ Q)"
declare hoare_r_def [upred_defs]
named_theorems hoare and hoare_safe
method hoare_split uses hr =
((simp add: assigns_comp)?,
(auto
intro: hoare intro!: hoare_safe hr
simp add: conj_comm conj_assoc usubst unrest))[1]
method hoare_auto uses hr = (hoare_split hr: hr; (rel_simp)?, auto?)
subsection ‹ Basic Laws ›
lemma hoare_meaning:
"⦃P⦄S⦃Q⦄⇩u = (∀ s s'. ⟦P⟧⇩e s ∧ ⟦S⟧⇩e (s, s') ⟶ ⟦Q⟧⇩e s')"
by (rel_auto)
lemma hoare_assume: "⦃P⦄S⦃Q⦄⇩u ⟹ ?[P] ;; S = ?[P] ;; S ;; ?[Q]"
by (rel_auto)
lemma hoare_r_conj [hoare_safe]: "⟦ ⦃p⦄Q⦃r⦄⇩u; ⦃p⦄Q⦃s⦄⇩u ⟧ ⟹ ⦃p⦄Q⦃r ∧ s⦄⇩u"
by rel_auto
lemma hoare_r_weaken_pre [hoare]:
"⦃p⦄Q⦃r⦄⇩u ⟹ ⦃p ∧ q⦄Q⦃r⦄⇩u"
"⦃q⦄Q⦃r⦄⇩u ⟹ ⦃p ∧ q⦄Q⦃r⦄⇩u"
by rel_auto+
lemma pre_str_hoare_r:
assumes "`p⇩1 ⇒ p⇩2`" and "⦃p⇩2⦄C⦃q⦄⇩u"
shows "⦃p⇩1⦄C⦃q⦄⇩u"
using assms by rel_auto
lemma post_weak_hoare_r:
assumes "⦃p⦄C⦃q⇩2⦄⇩u" and "`q⇩2 ⇒ q⇩1`"
shows "⦃p⦄C⦃q⇩1⦄⇩u"
using assms by rel_auto
lemma hoare_r_conseq: "⟦ `p⇩1 ⇒ p⇩2`; ⦃p⇩2⦄S⦃q⇩2⦄⇩u; `q⇩2 ⇒ q⇩1` ⟧ ⟹ ⦃p⇩1⦄S⦃q⇩1⦄⇩u"
by rel_auto
subsection ‹ Assignment Laws ›
lemma assigns_hoare_r [hoare_safe]: "`p ⇒ σ † q` ⟹ ⦃p⦄⟨σ⟩⇩a⦃q⦄⇩u"
by rel_auto
lemma assigns_backward_hoare_r:
"⦃σ † p⦄⟨σ⟩⇩a⦃p⦄⇩u"
by rel_auto
lemma assign_floyd_hoare_r:
assumes "vwb_lens x"
shows "⦃p⦄ assign_r x e ⦃❙∃v ∙ p⟦«v»/x⟧ ∧ &x =⇩u e⟦«v»/x⟧⦄⇩u"
using assms
by (rel_auto, metis vwb_lens_wb wb_lens.get_put)
lemma assigns_init_hoare [hoare_safe]:
"⟦ vwb_lens x; x ♯ p; x ♯ v; ⦃&x =⇩u v ∧ p⦄S⦃q⦄⇩u ⟧ ⟹ ⦃p⦄x := v ;; S⦃q⦄⇩u"
by (rel_auto)
lemma skip_hoare_r [hoare_safe]: "⦃p⦄II⦃p⦄⇩u"
by rel_auto
lemma skip_hoare_impl_r [hoare_safe]: "`p ⇒ q` ⟹ ⦃p⦄II⦃q⦄⇩u"
by rel_auto
subsection ‹ Sequence Laws ›
lemma seq_hoare_r: "⟦ ⦃p⦄Q⇩1⦃s⦄⇩u ; ⦃s⦄Q⇩2⦃r⦄⇩u ⟧ ⟹ ⦃p⦄Q⇩1 ;; Q⇩2⦃r⦄⇩u"
by rel_auto
lemma seq_hoare_invariant [hoare_safe]: "⟦ ⦃p⦄Q⇩1⦃p⦄⇩u ; ⦃p⦄Q⇩2⦃p⦄⇩u ⟧ ⟹ ⦃p⦄Q⇩1 ;; Q⇩2⦃p⦄⇩u"
by rel_auto
lemma seq_hoare_stronger_pre_1 [hoare_safe]:
"⟦ ⦃p ∧ q⦄Q⇩1⦃p ∧ q⦄⇩u ; ⦃p ∧ q⦄Q⇩2⦃q⦄⇩u ⟧ ⟹ ⦃p ∧ q⦄Q⇩1 ;; Q⇩2⦃q⦄⇩u"
by rel_auto
lemma seq_hoare_stronger_pre_2 [hoare_safe]:
"⟦ ⦃p ∧ q⦄Q⇩1⦃p ∧ q⦄⇩u ; ⦃p ∧ q⦄Q⇩2⦃p⦄⇩u ⟧ ⟹ ⦃p ∧ q⦄Q⇩1 ;; Q⇩2⦃p⦄⇩u"
by rel_auto
lemma seq_hoare_inv_r_2 [hoare]: "⟦ ⦃p⦄Q⇩1⦃q⦄⇩u ; ⦃q⦄Q⇩2⦃q⦄⇩u ⟧ ⟹ ⦃p⦄Q⇩1 ;; Q⇩2⦃q⦄⇩u"
by rel_auto
lemma seq_hoare_inv_r_3 [hoare]: "⟦ ⦃p⦄Q⇩1⦃p⦄⇩u ; ⦃p⦄Q⇩2⦃q⦄⇩u ⟧ ⟹ ⦃p⦄Q⇩1 ;; Q⇩2⦃q⦄⇩u"
by rel_auto
subsection ‹ Conditional Laws ›
lemma cond_hoare_r [hoare_safe]: "⟦ ⦃b ∧ p⦄S⦃q⦄⇩u ; ⦃¬b ∧ p⦄T⦃q⦄⇩u ⟧ ⟹ ⦃p⦄S ◃ b ▹⇩r T⦃q⦄⇩u"
by rel_auto
lemma cond_hoare_r_wp:
assumes "⦃p'⦄S⦃q⦄⇩u" and "⦃p''⦄T⦃q⦄⇩u"
shows "⦃(b ∧ p') ∨ (¬b ∧ p'')⦄S ◃ b ▹⇩r T⦃q⦄⇩u"
using assms by pred_simp
lemma cond_hoare_r_sp:
assumes ‹⦃b ∧ p⦄S⦃q⦄⇩u› and ‹⦃¬b ∧ p⦄T⦃s⦄⇩u›
shows ‹⦃p⦄S ◃ b ▹⇩r T⦃q ∨ s⦄⇩u›
using assms by pred_simp
subsection ‹ Recursion Laws ›
lemma nu_hoare_r_partial:
assumes induct_step:
"⋀ st P. ⦃p⦄P⦃q⦄⇩u ⟹ ⦃p⦄F P⦃q⦄⇩u"
shows "⦃p⦄ν F ⦃q⦄⇩u"
by (meson hoare_r_def induct_step lfp_lowerbound order_refl)
lemma mu_hoare_r:
assumes WF: "wf R"
assumes M:"mono F"
assumes induct_step:
"⋀ st P. ⦃p ∧ (e,«st»)⇩u ∈⇩u «R»⦄P⦃q⦄⇩u ⟹ ⦃p ∧ e =⇩u «st»⦄F P⦃q⦄⇩u"
shows "⦃p⦄μ F ⦃q⦄⇩u"
unfolding hoare_r_def
proof (rule mu_rec_total_utp_rule[OF WF M , of _ e ], goal_cases)
case (1 st)
then show ?case
using induct_step[unfolded hoare_r_def, of "(⌈p⌉⇩< ∧ (⌈e⌉⇩<, «st»)⇩u ∈⇩u «R» ⇒ ⌈q⌉⇩>)" st]
by (simp add: alpha)
qed
lemma mu_hoare_r':
assumes WF: "wf R"
assumes M:"mono F"
assumes induct_step:
"⋀ st P. ⦃p ∧ (e,«st»)⇩u ∈⇩u «R»⦄ P ⦃q⦄⇩u ⟹ ⦃p ∧ e =⇩u «st»⦄ F P ⦃q⦄⇩u"
assumes I0: "`p' ⇒ p`"
shows "⦃p'⦄ μ F ⦃q⦄⇩u"
by (meson I0 M WF induct_step mu_hoare_r pre_str_hoare_r)
subsection ‹ Iteration Rules ›
lemma iter_hoare_r: "⦃P⦄S⦃P⦄⇩u ⟹ ⦃P⦄S⇧⋆⦃P⦄⇩u"
by (rel_simp', metis (mono_tags, lifting) mem_Collect_eq rtrancl_induct)
lemma while_hoare_r [hoare_safe]:
assumes "⦃p ∧ b⦄S⦃p⦄⇩u"
shows "⦃p⦄while b do S od⦃¬b ∧ p⦄⇩u"
using assms
by (simp add: while_top_def hoare_r_def, rule_tac lfp_lowerbound) (rel_auto)
lemma while_invr_hoare_r [hoare_safe]:
assumes "⦃p ∧ b⦄S⦃p⦄⇩u" "`pre ⇒ p`" "`(¬b ∧ p) ⇒ post`"
shows "⦃pre⦄while b invr p do S od⦃post⦄⇩u"
by (metis assms hoare_r_conseq while_hoare_r while_inv_def)
lemma while_r_minimal_partial:
assumes seq_step: "`p ⇒ invar`"
assumes induct_step: "⦃invar∧ b⦄ C ⦃invar⦄⇩u"
shows "⦃p⦄while b do C od⦃¬b ∧ invar⦄⇩u"
using induct_step pre_str_hoare_r seq_step while_hoare_r by blast
lemma approx_chain:
"(⨅n::nat. ⌈p ∧ v <⇩u «n»⌉⇩<) = ⌈p⌉⇩<"
by (rel_auto)
text ‹ Total correctness law for Hoare logic, based on constructive chains. This is limited to
variants that have naturals numbers as their range. ›
lemma while_term_hoare_r:
assumes "⋀ z::nat. ⦃p ∧ b ∧ v =⇩u «z»⦄S⦃p ∧ v <⇩u «z»⦄⇩u"
shows "⦃p⦄while⇩⊥ b do S od⦃¬b ∧ p⦄⇩u"
proof -
have "(⌈p⌉⇩< ⇒ ⌈¬ b ∧ p⌉⇩>) ⊑ (μ X ∙ S ;; X ◃ b ▹⇩r II)"
proof (rule mu_refine_intro)
from assms show "(⌈p⌉⇩< ⇒ ⌈¬ b ∧ p⌉⇩>) ⊑ S ;; (⌈p⌉⇩< ⇒ ⌈¬ b ∧ p⌉⇩>) ◃ b ▹⇩r II"
by (rel_auto)
let ?E = "λ n. ⌈p ∧ v <⇩u «n»⌉⇩<"
show "(⌈p⌉⇩< ∧ (μ X ∙ S ;; X ◃ b ▹⇩r II)) = (⌈p⌉⇩< ∧ (ν X ∙ S ;; X ◃ b ▹⇩r II))"
proof (rule constr_fp_uniq[where E="?E"])
show "(⨅n. ?E(n)) = ⌈p⌉⇩<"
by (rel_auto)
show "mono (λX. S ;; X ◃ b ▹⇩r II)"
by (simp add: cond_mono monoI seqr_mono)
show "constr (λX. S ;; X ◃ b ▹⇩r II) ?E"
proof (rule constrI)
show "chain ?E"
proof (rule chainI)
show "⌈p ∧ v <⇩u «0»⌉⇩< = false"
by (rel_auto)
show "⋀i. ⌈p ∧ v <⇩u «Suc i»⌉⇩< ⊑ ⌈p ∧ v <⇩u «i»⌉⇩<"
by (rel_auto)
qed
from assms
show "⋀X n. (S ;; X ◃ b ▹⇩r II ∧ ⌈p ∧ v <⇩u «n + 1»⌉⇩<) =
(S ;; (X ∧ ⌈p ∧ v <⇩u «n»⌉⇩<) ◃ b ▹⇩r II ∧ ⌈p ∧ v <⇩u «n + 1»⌉⇩<)"
apply (rel_auto)
using less_antisym less_trans apply blast
done
qed
qed
qed
thus ?thesis
by (simp add: hoare_r_def while_bot_def)
qed
lemma while_vrt_hoare_r [hoare_safe]:
assumes "⋀ z::nat. ⦃p ∧ b ∧ v =⇩u «z»⦄S⦃p ∧ v <⇩u «z»⦄⇩u" "`pre ⇒ p`" "`(¬b ∧ p) ⇒ post`"
shows "⦃pre⦄while b invr p vrt v do S od⦃post⦄⇩u"
apply (rule hoare_r_conseq[OF assms(2) _ assms(3)])
apply (simp add: while_vrt_def)
apply (rule while_term_hoare_r[where v="v", OF assms(1)])
done
text ‹ General total correctness law based on well-founded induction ›
lemma while_wf_hoare_r:
assumes WF: "wf R"
assumes I0: "`pre ⇒ p`"
assumes induct_step:"⋀ st. ⦃b ∧ p ∧ e =⇩u «st»⦄Q⦃p ∧ (e, «st»)⇩u ∈⇩u «R»⦄⇩u"
assumes PHI:"`(¬b ∧ p) ⇒ post`"
shows "⦃pre⦄while⇩⊥ b invr p do Q od⦃post⦄⇩u"
unfolding hoare_r_def while_inv_bot_def while_bot_def
proof (rule pre_weak_rel[of _ "⌈p⌉⇩<" ])
from I0 show "`⌈pre⌉⇩< ⇒ ⌈p⌉⇩<`"
by rel_auto
show "(⌈p⌉⇩< ⇒ ⌈post⌉⇩>) ⊑ (μ X ∙ Q ;; X ◃ b ▹⇩r II)"
proof (rule mu_rec_total_utp_rule[where e=e, OF WF])
show "Monotonic (λX. Q ;; X ◃ b ▹⇩r II)"
by (simp add: closure)
have induct_step': "⋀ st. (⌈b ∧ p ∧ e =⇩u «st» ⌉⇩< ⇒ (⌈p ∧ (e,«st»)⇩u ∈⇩u «R» ⌉⇩> )) ⊑ Q"
using induct_step by rel_auto
with PHI
show "⋀st. (⌈p⌉⇩< ∧ ⌈e⌉⇩< =⇩u «st» ⇒ ⌈post⌉⇩>) ⊑ Q ;; (⌈p⌉⇩< ∧ (⌈e⌉⇩<, «st»)⇩u ∈⇩u «R» ⇒ ⌈post⌉⇩>) ◃ b ▹⇩r II"
by (rel_auto)
qed
qed
subsection ‹ Frame Rules ›
text ‹ Frame rule: If starting $S$ in a state satisfying $p establishes q$ in the final state, then
we can insert an invariant predicate $r$ when $S$ is framed by $a$, provided that $r$ does not
refer to variables in the frame, and $q$ does not refer to variables outside the frame. ›
lemma frame_hoare_r:
assumes "vwb_lens a" "a ♯ r" "a ♮ q" "⦃p⦄P⦃q⦄⇩u"
shows "⦃p ∧ r⦄a:[P]⦃q ∧ r⦄⇩u"
using assms
by (rel_auto, metis)
lemma frame_strong_hoare_r [hoare_safe]:
assumes "vwb_lens a" "a ♯ r" "a ♮ q" "⦃p ∧ r⦄S⦃q⦄⇩u"
shows "⦃p ∧ r⦄a:[S]⦃q ∧ r⦄⇩u"
using assms by (rel_auto, metis)
lemma frame_hoare_r' [hoare_safe]:
assumes "vwb_lens a" "a ♯ r" "a ♮ q" "⦃r ∧ p⦄S⦃q⦄⇩u"
shows "⦃r ∧ p⦄a:[S]⦃r ∧ q⦄⇩u"
using assms
by (simp add: frame_strong_hoare_r utp_pred_laws.inf.commute)
lemma antiframe_hoare_r:
assumes "vwb_lens a" "a ♮ r" "a ♯ q" "⦃p⦄P⦃q⦄⇩u"
shows "⦃p ∧ r⦄ a:⟦P⟧ ⦃q ∧ r⦄⇩u"
using assms by (rel_auto, metis)
lemma antiframe_strong_hoare_r:
assumes "vwb_lens a" "a ♮ r" "a ♯ q" "⦃p ∧ r⦄P⦃q⦄⇩u"
shows "⦃p ∧ r⦄ a:⟦P⟧ ⦃q ∧ r⦄⇩u"
using assms by (rel_auto, metis)
end