Theory Collections_Examples.Exploration
section ‹\isaheader{State Space Exploration}›
theory Exploration
imports Main Collections.Collections
begin
text_raw ‹\label{thy:Exploration}›
text ‹
In this theory, a workset algorithm for state-space exploration is defined.
It explores the set of states that are reachable by a given relation,
starting at a given set of initial states.
The specification makes use of the data refinement framework for
while-algorithms (cf. Section~\ref{thy:DatRef}), and is thus suited for
being refined to an executable algorithm, using the Isabelle Collections Framework
to provide the necessary data structures.
›
subsection "Generic Search Algorithm"
type_synonym 'Σ sse_state = "'Σ set × 'Σ set"
inductive_set
sse_step :: "('Σ×'Σ) set ⇒ ('Σ sse_state × 'Σ sse_state) set"
for R where
"⟦ σ∈W;
Σ' = Σ ∪ (R``{σ});
W' = (W-{σ}) ∪ ((R``{σ}) - Σ)
⟧ ⟹ ((Σ,W),(Σ',W'))∈sse_step R"
definition sse_cond :: "'Σ sse_state set" where
"sse_cond = {(Σ,W). W≠{}}"
definition sse_initial :: "'Σ set ⇒ 'Σ sse_state" where
"sse_initial Σi == (Σi,Σi)"
definition sse_invar :: "'Σ set ⇒ ('Σ×'Σ) set ⇒ 'Σ sse_state set" where
"sse_invar Σi R = {(Σ,W).
W⊆Σ ∧
(Σ ⊆ R⇧*``Σi) ∧
(∀σ∈(R⇧*``Σi)-Σ. ∃σh∈W. (σh,σ)∈(R - (UNIV × Σ))⇧*)
}"
definition "sse_algo Σi R ==
⦇ wa_cond=sse_cond,
wa_step=sse_step R,
wa_initial = {sse_initial Σi},
wa_invar = sse_invar Σi R ⦈"
definition "sse_term_rel Σi R ==
{ (σ',σ). σ∈sse_invar Σi R ∧ (σ,σ')∈sse_step R }"
theorem sse_term:
assumes finite[simp, intro!]: "finite (R⇧*``Σi)"
shows "wf (sse_term_rel Σi R)"
proof -
have "wf (({(Σ',Σ). Σ ⊂ Σ' ∧ Σ' ⊆ (R⇧*``Σi)}) <*lex*> finite_psubset)"
by (auto intro: wf_bounded_supset)
moreover have "sse_term_rel Σi R ⊆ …" (is "_ ⊆ ?R")
proof
fix S
assume A: "S∈sse_term_rel Σi R"
obtain Σ W Σ' W' σ where
[simp]: "S=((Σ',W'),(Σ,W))" and
S: "(Σ,W) ∈ sse_invar Σi R"
"σ∈W"
"Σ' = Σ ∪ R``{σ}"
"W' = (W-{σ}) ∪ (R``{σ} - Σ)"
proof -
obtain Σ W Σ' W' where SF[simp]: "S=((Σ',W'),(Σ,W))" by (cases S) force
from A have R: "(Σ,W) ∈ sse_invar Σi R" "((Σ,W),(Σ',W'))∈sse_step R"
by (auto simp add: sse_term_rel_def)
from sse_step.cases[OF R(2)] obtain σ where S:
"σ∈W"
"Σ' = Σ ∪ R``{σ}"
"W' = (W-{σ}) ∪ (R``{σ} - Σ)"
by metis
thus ?thesis
by (rule_tac that[OF SF R(1) S])
qed
from S(1) have
[simp, intro!]: "finite Σ" "finite W" and
WSS: "W⊆Σ" and
SSS: "Σ⊆R⇧*``Σi"
by (auto simp add: sse_invar_def intro: finite_subset)
show "S∈?R" proof (cases "R``{σ} ⊆ Σ")
case True with S have "Σ'=Σ" "W' ⊂ W" by auto
thus ?thesis by (simp)
next
case False
with S have "Σ' ⊃ Σ" by auto
moreover from S(2) WSS SSS have "σ∈R⇧*``Σi" by auto
hence "R``{σ} ⊆ R⇧*``Σi"
by (auto intro: rtrancl_into_rtrancl)
with S(3) SSS have "Σ' ⊆ R⇧*``Σi" by auto
ultimately show ?thesis by force
qed
qed
ultimately show ?thesis by (auto intro: wf_subset)
qed
lemma sse_invar_initial: "(sse_initial Σi) ∈ sse_invar Σi R"
by (unfold sse_invar_def sse_initial_def)
(auto elim: rtrancl_last_touch)
theorem sse_invar_final:
"∀S. S∈wa_invar (sse_algo Σi R) ∧ S∉wa_cond (sse_algo Σi R)
⟶ fst S = R⇧*``Σi"
by (intro allI, case_tac S)
(auto simp add: sse_invar_def sse_cond_def sse_algo_def)
lemma sse_invar_step: "⟦S∈sse_invar Σi R; (S,S')∈sse_step R⟧
⟹ S'∈sse_invar Σi R"
apply (cases S, cases S')
apply clarsimp
apply (erule sse_step.cases)
apply clarsimp
apply (subst sse_invar_def)
apply (simp add: Let_def split_conv)
apply (intro conjI)
apply (auto simp add: sse_invar_def) [3]
apply (force simp add: sse_invar_def
dest: rtrancl_into_rtrancl) [1]
proof (intro ballI)
fix σ W Σ σ'
assume A:
"(Σ,W)∈sse_invar Σi R"
"σ∈W"
"σ'∈R⇧* `` Σi - (Σ ∪ R `` {σ})"
from A(3) have "σ' ∈ R⇧* `` Σi - Σ" by auto
with A(1) obtain σh where IP:
"σh∈W"
"(σh,σ')∈(R - (UNIV × Σ))⇧*"
and SS:
"W⊆Σ"
"Σ⊆R⇧* `` Σi"
by (unfold sse_invar_def) force
from IP(2) show "∃σh∈W - {σ} ∪ (R `` {σ} - Σ).
(σh, σ') ∈ (R - UNIV × (Σ ∪ R `` {σ}))⇧*"
proof (cases rule: rtrancl_last_visit[where S="R `` {σ}"])
case no_visit
hence G1: "(σh,σ')∈(R- (UNIV × (Σ∪R `` {σ})))⇧*"
by (simp add: set_diff_diff_left Sigma_Un_distrib2)
moreover have "σh ≠ σ"
proof
assume [simp]: "σh=σ"
from A SS have "σ≠σ'" by auto
with G1 show False
by (auto simp add: elim: converse_rtranclE)
qed
ultimately show ?thesis using IP(1) by auto
next
case (last_visit_point σt)
hence "(σt,σ')∈(R- (UNIV × (Σ∪R `` {σ})))⇧*"
by (simp add: set_diff_diff_left Sigma_Un_distrib2)
moreover from last_visit_point(2) have "σt∉Σ"
by (auto elim: trancl.cases)
ultimately show ?thesis using last_visit_point(1) by auto
qed
qed
theorem sse_while_algo: "finite (R⇧*``Σi) ⟹ while_algo (sse_algo Σi R)"
apply unfold_locales
apply (auto simp add: sse_algo_def intro: sse_invar_step sse_invar_initial)
apply (drule sse_term)
apply (erule_tac wf_subset)
apply (unfold sse_term_rel_def)
apply auto
done
subsection "Depth First Search"
text_raw ‹\label{sec:sse:dfs}›
text ‹
In this section, the generic state space exploration algorithm is refined
to a DFS-algorithm, that uses a stack to implement the workset.
›
type_synonym 'Σ dfs_state = "'Σ set × 'Σ list"
definition dfs_α :: "'Σ dfs_state ⇒ 'Σ sse_state"
where "dfs_α S == let (Σ,W)=S in (Σ,set W)"
definition dfs_invar_add :: "'Σ dfs_state set"
where "dfs_invar_add == {(Σ,W). distinct W}"
definition "dfs_invar Σi R == dfs_invar_add ∩ { s. dfs_α s ∈ sse_invar Σi R }"
inductive_set dfs_initial :: "'Σ set ⇒ 'Σ dfs_state set" for Σi
where "⟦ distinct W; set W = Σi⟧ ⟹ (Σi,W)∈dfs_initial Σi"
inductive_set dfs_step :: "('Σ×'Σ) set ⇒ ('Σ dfs_state ×'Σ dfs_state) set"
for R where
"⟦ W=σ#Wtl;
distinct Wn;
set Wn = R``{σ} - Σ;
W' = Wn@Wtl;
Σ' = R``{σ} ∪ Σ
⟧ ⟹ ((Σ,W),(Σ',W'))∈dfs_step R"
definition dfs_cond :: "'Σ dfs_state set"
where "dfs_cond == { (Σ,W). W≠[]}"
definition "dfs_algo Σi R == ⦇
wa_cond = dfs_cond,
wa_step = dfs_step R,
wa_initial = dfs_initial Σi,
wa_invar = dfs_invar Σi R ⦈"
theorem dfs_pref_sse:
"wa_precise_refine (dfs_algo Σi R) (sse_algo Σi R) dfs_α"
apply (unfold_locales)
apply (auto simp add: dfs_algo_def sse_algo_def dfs_cond_def sse_cond_def
dfs_α_def)
apply (erule dfs_step.cases)
apply (rule_tac σ=σ in sse_step.intros)
apply (auto simp add: dfs_invar_def sse_invar_def dfs_invar_add_def
sse_initial_def dfs_α_def
elim: dfs_initial.cases)
done
theorem dfs_while_algo:
assumes finite[simp, intro!]: "finite (R⇧*``Σi)"
shows "while_algo (dfs_algo Σi R)"
proof -
interpret wa_precise_refine "(dfs_algo Σi R)" "(sse_algo Σi R)" dfs_α
using dfs_pref_sse .
have [simp]: "wa_invar (sse_algo Σi R) = sse_invar Σi R"
by (simp add: sse_algo_def)
show ?thesis
apply (rule wa_intro)
apply (simp add: sse_while_algo)
apply (simp add: dfs_invar_def dfs_algo_def)
apply (auto simp add: dfs_invar_add_def dfs_algo_def dfs_α_def
dfs_cond_def sse_invar_def
elim!: dfs_step.cases) [1]
apply (auto simp add: dfs_invar_add_def dfs_algo_def
elim: dfs_initial.cases) [1]
done
qed
lemmas dfs_invar_final =
wa_precise_refine.transfer_correctness[OF dfs_pref_sse sse_invar_final]
end