Theory Transport_Compositions_Agree_Galois_Equivalence
subsection ‹Galois Equivalence›
theory Transport_Compositions_Agree_Galois_Equivalence
imports
Transport_Compositions_Agree_Galois_Connection
begin
context transport_comp_agree
begin
interpretation flip : transport_comp_agree R2 L2 r2 l2 R1 L1 r1 l1 .
lemma galois_equivalenceI:
assumes galois: "((≤⇘L1⇙) ≡⇩G (≤⇘R1⇙)) l1 r1" "((≤⇘L2⇙) ≡⇩G (≤⇘R2⇙)) l2 r2"
and mono_L1_L2_l1: "⋀x y. x ≤⇘L1⇙ y ⟹ l1 x ≤⇘R1⇙ l1 y ⟹ l1 x ≤⇘L2⇙ l1 y"
and mono_R2_R1_r2: "⋀x y. x ≤⇘R2⇙ y ⟹ r2 x ≤⇘L2⇙ r2 y ⟹ r2 x ≤⇘R1⇙ r2 y"
and "(in_dom (≤⇘L1⇙) ⇛ in_codom (≤⇘R2⇙) ⇛ (⟷))
(rel_bimap l1 r2 (≤⇘R1⇙)) (rel_bimap l1 r2 (≤⇘L2⇙))"
and mono_iff2: "(in_dom (≤⇘R2⇙) ⇛ in_codom (≤⇘L1⇙) ⇛ (⟷))
(rel_bimap r2 l1 (≤⇘R1⇙)) (rel_bimap r2 l1 (≤⇘L2⇙))"
shows "((≤⇘L⇙) ≡⇩G (≤⇘R⇙)) l r"
proof -
from galois mono_L1_L2_l1 have "(in_codom (≤⇘L1⇙) ⇒ in_codom (≤⇘L2⇙)) l1"
by (intro mono_wrt_predI) blast
moreover from galois mono_R2_R1_r2 have "(in_dom (≤⇘R2⇙) ⇒ in_dom (≤⇘R1⇙)) r2"
by (intro mono_wrt_predI) blast
moreover from mono_iff2 have "(in_dom (≤⇘R2⇙) ⇛ in_codom (≤⇘L1⇙) ⇛ (⟷))
(rel_bimap r2 l1 (≤⇘L2⇙)) (rel_bimap r2 l1 (≤⇘R1⇙))" by blast
ultimately show ?thesis using assms
by (intro galois_equivalenceI galois_connectionI flip.galois_propI) auto
qed
lemma galois_equivalenceI':
assumes "((≤⇘L1⇙) ≡⇩G (≤⇘R1⇙)) l1 r1" "((≤⇘L2⇙) ≡⇩G (≤⇘R2⇙)) l2 r2"
and "((≤⇘L1⇙) ⇒ (≤⇘L2⇙)) l1" "((≤⇘R2⇙) ⇒ (≤⇘R1⇙)) r2"
and "(in_dom (≤⇘L1⇙) ⇛ in_codom (≤⇘R2⇙) ⇛ (⟷))
(rel_bimap l1 r2 (≤⇘R1⇙)) (rel_bimap l1 r2 (≤⇘L2⇙))"
and "(in_dom (≤⇘R2⇙) ⇛ in_codom (≤⇘L1⇙) ⇛ (⟷))
(rel_bimap r2 l1 (≤⇘R1⇙)) (rel_bimap r2 l1 (≤⇘L2⇙))"
shows "((≤⇘L⇙) ≡⇩G (≤⇘R⇙)) l r"
using assms by (intro galois_equivalenceI) auto
end
context transport_comp_same
begin
lemma galois_equivalenceI:
assumes "((≤⇘L1⇙) ≡⇩G (≤⇘R1⇙)) l1 r1" "((≤⇘R1⇙) ≡⇩G (≤⇘R2⇙)) l2 r2"
shows "((≤⇘L⇙) ≡⇩G (≤⇘R⇙)) l r"
using assms by (rule galois_equivalenceI) auto
end
end