Theory Transport_Compositions_Agree_Galois_Connection
subsection ‹Galois Connection›
theory Transport_Compositions_Agree_Galois_Connection
imports
Transport_Compositions_Agree_Monotone
Transport_Compositions_Agree_Galois_Property
begin
context transport_comp_agree
begin
interpretation flip : transport_comp_agree R2 L2 r2 l2 R1 L1 r1 l1 .
lemma galois_connectionI:
assumes galois: "((≤⇘L1⇙) ⊣ (≤⇘R1⇙)) l1 r1" "((≤⇘L2⇙) ⊣ (≤⇘R2⇙)) l2 r2"
and mono_L1_L2_l1: "⋀x y. x ≤⇘L1⇙ y ⟹ l1 x ≤⇘R1⇙ l1 y ⟹ l1 x ≤⇘L2⇙ l1 y"
and mono_R2_R1_r2: "⋀x y. x ≤⇘R2⇙ y ⟹ r2 x ≤⇘L2⇙ r2 y ⟹ r2 x ≤⇘R1⇙ r2 y"
and "(in_dom (≤⇘L1⇙) ⇛ in_codom (≤⇘R2⇙) ⇛ (⟷)) (rel_bimap l1 r2 (≤⇘R1⇙)) (rel_bimap l1 r2 (≤⇘L2⇙))"
shows "((≤⇘L⇙) ⊣ (≤⇘R⇙)) l r"
proof -
from galois mono_L1_L2_l1 have "(in_dom (≤⇘L1⇙) ⇒ in_dom (≤⇘L2⇙)) l1"
by (intro mono_wrt_predI) (blast elim!: in_domE g1.galois_connectionE)
moreover from galois mono_R2_R1_r2
have "(in_codom (≤⇘R2⇙) ⇒ in_codom (≤⇘R1⇙)) r2"
by (intro mono_wrt_predI) (blast elim!: in_codomE g2.galois_connectionE)
ultimately show ?thesis using assms
by (intro galois_connectionI galois_propI mono_wrt_rel_leftI
flip.mono_wrt_rel_leftI)
auto
qed
lemma galois_connectionI':
assumes "((≤⇘L1⇙) ⊣ (≤⇘R1⇙)) l1 r1" "((≤⇘L2⇙) ⊣ (≤⇘R2⇙)) l2 r2"
and "((≤⇘L1⇙) ⇒ (≤⇘L2⇙)) l1" "((≤⇘R2⇙) ⇒ (≤⇘R1⇙)) r2"
and "(in_dom (≤⇘L1⇙) ⇛ in_codom (≤⇘R2⇙) ⇛ (⟷))
(rel_bimap l1 r2 (≤⇘R1⇙)) (rel_bimap l1 r2 (≤⇘L2⇙))"
shows "((≤⇘L⇙) ⊣ (≤⇘R⇙)) l r"
using assms by (intro galois_connectionI) auto
end
context transport_comp_same
begin
corollary galois_connectionI:
assumes "((≤⇘L1⇙) ⊣ (≤⇘R1⇙)) l1 r1" "((≤⇘R1⇙) ⊣ (≤⇘R2⇙)) l2 r2"
shows "((≤⇘L⇙) ⊣ (≤⇘R⇙)) l r"
using assms by (rule galois_connectionI) auto
end
end