Theory Predicate_Functions
subsection ‹Functions on Predicates›
theory Predicate_Functions
imports
Functions_Base
begin
definition "pred_map f (P :: 'a ⇒ bool) x ≡ P (f x)"
lemma pred_map_eq [simp]: "pred_map f P x = P (f x)"
unfolding pred_map_def by simp
lemma comp_eq_pred_map [simp]: "P ∘ f = pred_map f P"
by (intro ext) simp
subsubsection ‹Collection›
consts pred_collect :: "'a ⇒ ('b ⇒ 'c) ⇒ 'd"
open_bundle pred_collect_syntax
begin
no_notation disj (infixr ‹|› 30)
syntax "_pred_collect" :: ‹idt ⇒ idt ⇒ 'a ⇒ 'b ⇒ 'c› ("(⦇_ : _ |/ _⦈)")
syntax_consts "_pred_collect" ⇌ pred_collect
translations
"⦇x : R | P⦈" ⇌ "CONST pred_collect R (λx. P)"
end
definition "pred_collect_pred :: ('a ⇒ bool) ⇒ ('a ⇒ bool) ⇒ 'a ⇒ bool ≡ (⊓)"
adhoc_overloading pred_collect ⇌ pred_collect_pred
lemma pred_collectI [intro]:
assumes "P x"
and "P x ⟹ Q x"
shows "⦇x : P | Q x⦈ x"
using assms unfolding pred_collect_pred_def by auto
lemma pred_collectE [elim]:
assumes "⦇x : P | Q x⦈ x"
obtains "P x" "Q x"
using assms unfolding pred_collect_pred_def by auto
lemma pred_collect_eq_inf: "pred_collect = (⊓)"
by (intro ext) auto
subsubsection ‹Conditional Predicate›
consts pred_if :: "bool ⇒ 'a ⇒ 'a"
open_bundle pred_if_syntax
begin
notation pred_if (infixr ‹⟶⇩p› 50)
end
definition "pred_if_rel B P x ≡ B ⟶ P x"
adhoc_overloading pred_if ⇌ pred_if_rel
lemma pred_if_eq_pred_if_pred:
assumes "B"
shows "(B ⟶⇩p P) = P"
unfolding pred_if_rel_def using assms by blast
lemma pred_if_eq_top_if_not_pred:
assumes "¬B"
shows "(B ⟶⇩p P) = ⊤"
unfolding pred_if_rel_def using assms by fastforce
corollary pred_if_True_eq_self [simp]: "(True ⟶⇩p P) = P"
by (simp add: pred_if_eq_pred_if_pred)
corollary pred_if_False_eq_top [simp]: "(False ⟶⇩p P) = ⊤"
by (simp add: pred_if_eq_top_if_not_pred)
lemma pred_if_if_impI [intro]:
assumes "B ⟹ P x"
shows "(B ⟶⇩p P) x"
using assms by (cases B) simp_all
lemma pred_if_if_not_pred:
assumes "¬B"
shows "(B ⟶⇩p P) x"
using assms by simp
lemma pred_ifE [elim]:
assumes "(B ⟶⇩p P) x"
obtains "¬B" | "B" "P x"
using assms by (cases B) simp
lemma pred_ifD:
assumes "(B ⟶⇩p P) x"
and "B"
shows "P x"
using assms by blast
end