Theory Functions_Base

✐‹creator "Kevin Kappelmann"›
section ‹Functions›
subsection ‹Basic Functions›
theory Functions_Base
  imports
    Binary_Relation_Functions
begin

definition "id x  x"

lemma id_eq_self [simp]: "id x = x"
  unfolding id_def ..

lemma rel_map_id_eq_self [simp]: "rel_map id R = R" by (intro ext) auto

consts comp :: "'a  'b  'c"

open_bundle comp_syntax
begin
notation comp (infixl  55)
end

definition "comp_fun f g x  f (g x)"
adhoc_overloading comp comp_fun

lemma comp_eq [simp]: "(f  g) x = f (g x)"
  unfolding comp_fun_def ..

lemma id_comp_eq [simp]: "id  f = f"
  by (rule ext) simp

lemma comp_id_eq [simp]: "f  id = f"
  by (rule ext) simp

lemma bottom_comp_eq [simp]: "  f = " by auto
lemma top_comp_eq [simp]: "  f = " by auto


definition "dep_fun_map f g h x  g x (f x) (h (f x))"

definition "fun_map f g h  dep_fun_map f (λ_ _. g) h"

open_bundle dep_fun_map_syntax
begin
notation "fun_map" (infixr  40)
syntax
  "_dep_fun_map" :: "idt  ('a  'b)  ('c  'd)  ('b  'c) 
    ('a  'd)" ('(_/ : / _')  (_) [41, 41, 40] 40)
end
syntax_consts "_dep_fun_map"  dep_fun_map
translations
  "(x : f)  g"  "CONST dep_fun_map f (λx. g)"

lemma fun_map_eq_dep_fun_map: "(f  g) = ((_ :  f)  (λ_. g))"
  unfolding fun_map_def by simp

lemma fun_map_eq_dep_fun_map_uhint [uhint]:
  assumes "f  f'"
  and "g'  (λ_ _. g)"
  shows "(f  g) = ((x :  f')  g' x)"
  using assms by (simp add: fun_map_eq_dep_fun_map)

lemma dep_fun_map_eq [simp]: "((x : f)  g x) h x = g x (f x) (h (f x))"
  unfolding dep_fun_map_def ..

lemma fun_map_eq_comp [simp]: "(f  g) h = g  h  f"
  by (intro ext) (urule dep_fun_map_eq)

lemma fun_map_eq [simp]: "(f  g) h x = g (h (f x))"
  unfolding fun_map_eq_comp by simp

lemma fun_map_id_eq_comp [simp]: "fun_map id = (∘)"
  by (intro ext) simp

lemma fun_map_id_eq_comp' [simp]: "(f  id) h = h  f"
  by (intro ext) simp


consts has_inverse_on :: "'a  'b  'c  bool"

definition "has_inverse_on_pred (P :: 'a  bool) f  in_codom_on P ((=)  f)"
adhoc_overloading has_inverse_on has_inverse_on_pred

lemma has_inverse_on_pred_eq_in_codom_on: "has_inverse_on P = in_codom_on P  ((∘) (=))"
  unfolding has_inverse_on_pred_def by auto

lemma has_inverse_onI [intro]:
  assumes "P x"
  shows "has_inverse_on P f (f x)"
  using assms unfolding has_inverse_on_pred_def by auto

lemma has_inverse_on_if_pred_if_eq:
  assumes "y = f x"
  and "P x"
  shows "has_inverse_on P f y"
  using assms by auto

lemma has_inverse_onE [elim]:
  assumes "has_inverse_on P f y"
  obtains x where "P x" "y = f x"
  using assms unfolding has_inverse_on_pred_def by auto

context
  notes has_inverse_on_pred_eq_in_codom_on[simp]
begin

lemma has_inverse_on_bottom_eq [simp]: "has_inverse_on  = "
  by (urule in_codom_bottom_pred_eq_bottom)

lemma has_inverse_on_eq_pred_eq_eq_app [simp]: "has_inverse_on ((=) P) f = (=) (f P)"
  by (urule in_codom_on_eq_pred_eq)

lemma has_inverse_on_sup_eq_has_inverse_on_sup_has_inverse_on [simp]:
  "has_inverse_on (P  Q) = has_inverse_on P  has_inverse_on Q"
  supply ext[simp] by (urule in_codom_on_sup_pred_eq_in_codom_on_sup_in_codom_on)

end

definition "has_inverse  has_inverse_on "

lemma has_inverse_eq_has_inverse_on_top: "has_inverse = has_inverse_on "
  unfolding has_inverse_def by simp

lemma has_inverse_eq_has_inverse_on_top_uhint [uhint]:
  assumes "P  "
  shows "has_inverse  has_inverse_on P"
  using assms by (simp add: has_inverse_eq_has_inverse_on_top)

lemma has_inverse_iff_has_inverse_on_top: "has_inverse f y  has_inverse_on  f y"
  by (simp add: has_inverse_eq_has_inverse_on_top)

lemma has_inverseI [intro]:
  assumes "y = f x"
  shows "has_inverse f y"
  using assms by (urule has_inverse_on_if_pred_if_eq) simp

lemma has_inverseE [elim]:
  assumes "has_inverse f y"
  obtains x where "y = f x"
  using assms by (urule (e) has_inverse_onE)

end