Theory HOL_Mem_Of
theory HOL_Mem_Of
imports
HOL.Set
ML_Unification.ML_Unification_HOL_Setup
begin
definition "mem_of A x ≡ x ∈ A"
lemma mem_of_eq: "mem_of = (λA x. x ∈ A)" unfolding mem_of_def by simp
lemma mem_of_iff [iff]: "mem_of A x ⟷ x ∈ A" unfolding mem_of_def by simp
lemma mem_of_eq_mem_uhint [uhint]:
assumes "x ≡ x'"
and "A ≡ A'"
shows "mem_of A x ≡ x' ∈ A'"
using assms by simp
lemma mem_of_UNIV_eq_top [simp]: "mem_of UNIV = ⊤"
by auto
lemma mem_of_empty_eq_bot [simp]: "mem_of {} = ⊥"
by auto
end