Theory HOL_Mem_Of

✐‹creator "Kevin Kappelmann"›
theory HOL_Mem_Of
  imports
    HOL.Set
    ML_Unification.ML_Unification_HOL_Setup
begin

definition "mem_of A x  x  A"
lemma mem_of_eq: "mem_of = (λA x. x  A)" unfolding mem_of_def by simp
lemma mem_of_iff [iff]: "mem_of A x  x  A" unfolding mem_of_def by simp

lemma mem_of_eq_mem_uhint [uhint]:
  assumes "x  x'"
  and "A  A'"
  shows "mem_of A x  x'  A'"
  using assms by simp

lemma mem_of_UNIV_eq_top [simp]: "mem_of UNIV = "
  by auto

lemma mem_of_empty_eq_bot [simp]: "mem_of {} = "
  by auto


end