Theory ML_Unification.ML_Unification_HOL_Setup
section ‹Setup for HOL›
theory ML_Unification_HOL_Setup
imports
HOL.HOL
ML_Unification_Hints
begin
lemma eq_eq_True: "P ≡ (P ≡ Trueprop True)" by standard+ simp_all
declare [[uhint where hint_preprocessor = ‹Unification_Hints_Base.obj_logic_hint_preprocessor
@{thm atomize_eq[symmetric]} (Conv.rewr_conv @{thm eq_eq_True})›]]
and [[rec_uhint where hint_preprocessor = ‹Unification_Hints_Base.obj_logic_hint_preprocessor
@{thm atomize_eq[symmetric]} (Conv.rewr_conv @{thm eq_eq_True})›]]
lemma eq_TrueI: "PROP P ⟹ PROP P ≡ Trueprop True" by (standard) simp
declare [[ucombine add = ‹Standard_Unification_Combine.eunif_data
(Simplifier_Unification.SIMPS_TO_unify @{thm eq_TrueI}
|> Unification_Combinator.norm_unifier (Unification_Util.inst_norm_term'
Standard_Mixed_Unification.norms_first_higherp_decomp_comb_higher_unify)
|> K)
(Standard_Unification_Combine.metadata \<^binding>‹SIMPS_TO_unif› Prio.HIGH)›]]
declare [[ucombine add = ‹
let
open Term_Normalisation
val eq_beta_eta_dummy_vars = apply2 (beta_eta_short #> dummy_vars) #> op aconv
in
Standard_Unification_Combine.eunif_data
(Simplifier_Unification.simp_unify_progress eq_beta_eta_dummy_vars
(Simplifier_Unification.SIMPS_TO_UNIF_unify @{thm eq_TrueI}
Standard_Mixed_Unification.norms_first_higherp_decomp_comb_higher_unify)
(Unification_Util.inst_norm_term'
Standard_Mixed_Unification.norms_first_higherp_decomp_comb_higher_unify)
Standard_Mixed_Unification.first_higherp_decomp_comb_higher_unify
|> K)
(Standard_Unification_Combine.metadata \<^binding>‹SIMPS_TO_UNIF_unif› Prio.HIGH)
end›]]
end