Theory Eclose_Absolute

(*  Title:      ZF/Constructible/Datatype_absolute.thy
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
*)

section ‹Absoluteness Properties for Recursive Datatypes›

theory Eclose_Absolute imports "ZF-Constructible.Formula" "ZF-Constructible.WF_absolute" begin


subsection‹The lfp of a continuous function can be expressed as a union›

definition
  directed :: "i=>o" where
   "directed(A) == A0 & (xA. yA. x  y  A)"

definition
  contin :: "(i=>i) => o" where
   "contin(h) == (A. directed(A)  h(A) = (XA. h(X)))"

lemma bnd_mono_iterates_subset: "[|bnd_mono(D, h); n  nat|] ==> h^n (0)  D"
apply (induct_tac n) 
 apply (simp_all add: bnd_mono_def, blast) 
done

lemma bnd_mono_increasing [rule_format]:
     "[|i  nat; j  nat; bnd_mono(D,h)|] ==> i  j  h^i(0)  h^j(0)"
apply (rule_tac m=i and n=j in diff_induct, simp_all)
apply (blast del: subsetI
             intro: bnd_mono_iterates_subset bnd_monoD2 [of concl: h]) 
done

lemma directed_iterates: "bnd_mono(D,h) ==> directed({h^n (0). nnat})"
apply (simp add: directed_def, clarify) 
apply (rename_tac i j)
apply (rule_tac x="i  j" in bexI) 
apply (rule_tac i = i and j = j in Ord_linear_le)
apply (simp_all add: subset_Un_iff [THEN iffD1] le_imp_subset
                     subset_Un_iff2 [THEN iffD1])
apply (simp_all add: subset_Un_iff [THEN iff_sym] bnd_mono_increasing
                     subset_Un_iff2 [THEN iff_sym])
done


lemma contin_iterates_eq: 
    "[|bnd_mono(D, h); contin(h)|] 
     ==> h(nnat. h^n (0)) = (nnat. h^n (0))"
apply (simp add: contin_def directed_iterates) 
apply (rule trans) 
apply (rule equalityI) 
 apply (simp_all add: UN_subset_iff)
 apply safe
 apply (erule_tac [2] natE) 
  apply (rule_tac a="succ(x)" in UN_I) 
   apply simp_all 
apply blast 
done

lemma lfp_subset_Union:
     "[|bnd_mono(D, h); contin(h)|] ==> lfp(D,h)  (nnat. h^n(0))"
apply (rule lfp_lowerbound) 
 apply (simp add: contin_iterates_eq) 
apply (simp add: contin_def bnd_mono_iterates_subset UN_subset_iff) 
done

lemma Union_subset_lfp:
     "bnd_mono(D,h) ==> (nnat. h^n(0))  lfp(D,h)"
apply (simp add: UN_subset_iff)
apply (rule ballI)  
apply (induct_tac n, simp_all) 
apply (rule subset_trans [of _ "h(lfp(D,h))"])
 apply (blast dest: bnd_monoD2 [OF _ _ lfp_subset])  
apply (erule lfp_lemma2) 
done

lemma lfp_eq_Union:
     "[|bnd_mono(D, h); contin(h)|] ==> lfp(D,h) = (nnat. h^n(0))"
by (blast del: subsetI 
          intro: lfp_subset_Union Union_subset_lfp)


subsubsection‹Some Standard Datatype Constructions Preserve Continuity›

lemma contin_imp_mono: "[|XY; contin(F)|] ==> F(X)  F(Y)"
apply (simp add: contin_def) 
apply (drule_tac x="{X,Y}" in spec) 
apply (simp add: directed_def subset_Un_iff2 Un_commute) 
done

lemma sum_contin: "[|contin(F); contin(G)|] ==> contin(λX. F(X) + G(X))"
by (simp add: contin_def, blast)

lemma prod_contin: "[|contin(F); contin(G)|] ==> contin(λX. F(X) * G(X))" 
apply (subgoal_tac "B C. F(B)  F(B  C)")
 prefer 2 apply (simp add: Un_upper1 contin_imp_mono) 
apply (subgoal_tac "B C. G(C)  G(B  C)")
 prefer 2 apply (simp add: Un_upper2 contin_imp_mono) 
apply (simp add: contin_def, clarify) 
apply (rule equalityI) 
 prefer 2 apply blast 
apply clarify 
apply (rename_tac B C) 
apply (rule_tac a="B  C" in UN_I) 
 apply (simp add: directed_def, blast)  
done

lemma const_contin: "contin(λX. A)"
by (simp add: contin_def directed_def)

lemma id_contin: "contin(λX. X)"
by (simp add: contin_def)



subsection ‹Absoluteness for "Iterates"›

definition
  iterates_MH :: "[i=>o, [i,i]=>o, i, i, i, i] => o" where
   "iterates_MH(M,isF,v,n,g,z) ==
        is_nat_case(M, v, λm u. gm[M]. fun_apply(M,g,m,gm) & isF(gm,u),
                    n, z)"

definition
  is_iterates :: "[i=>o, [i,i]=>o, i, i, i] => o" where
    "is_iterates(M,isF,v,n,Z) == 
      sn[M]. msn[M]. successor(M,n,sn) & membership(M,sn,msn) &
                       is_wfrec(M, iterates_MH(M,isF,v), msn, n, Z)"

definition
  iterates_replacement :: "[i=>o, [i,i]=>o, i] => o" where
   "iterates_replacement(M,isF,v) ==
      n[M]. nnat  
         wfrec_replacement(M, iterates_MH(M,isF,v), Memrel(succ(n)))"

lemma (in M_basic) iterates_MH_abs:
  "[| relation1(M,isF,F); M(n); M(g); M(z) |] 
   ==> iterates_MH(M,isF,v,n,g,z)  z = nat_case(v, λm. F(g`m), n)"
by (simp add: nat_case_abs [of _ "λm. F(g ` m)"]
              relation1_def iterates_MH_def)  

lemma (in M_trancl) iterates_imp_wfrec_replacement:
  "[|relation1(M,isF,F); n  nat; iterates_replacement(M,isF,v)|] 
   ==> wfrec_replacement(M, λn f z. z = nat_case(v, λm. F(f`m), n), 
                       Memrel(succ(n)))" 
by (simp add: iterates_replacement_def iterates_MH_abs)

theorem (in M_trancl) iterates_abs:
  "[| iterates_replacement(M,isF,v); relation1(M,isF,F);
      n  nat; M(v); M(z); x[M]. M(F(x)) |] 
   ==> is_iterates(M,isF,v,n,z)  z = iterates(F,n,v)" 
apply (frule iterates_imp_wfrec_replacement, assumption+)
apply (simp add: wf_Memrel trans_Memrel relation_Memrel 
                 is_iterates_def relation2_def iterates_MH_abs 
                 iterates_nat_def recursor_def transrec_def 
                 eclose_sing_Ord_eq nat_into_M
         trans_wfrec_abs [of _ _ _ _ "λn g. nat_case(v, λm. F(g`m), n)"])
done


lemma (in M_trancl) iterates_closed [intro,simp]:
  "[| iterates_replacement(M,isF,v); relation1(M,isF,F);
      n  nat; M(v); x[M]. M(F(x)) |] 
   ==> M(iterates(F,n,v))"
apply (frule iterates_imp_wfrec_replacement, assumption+)
apply (simp add: wf_Memrel trans_Memrel relation_Memrel 
                 relation2_def iterates_MH_abs 
                 iterates_nat_def recursor_def transrec_def 
                 eclose_sing_Ord_eq nat_into_M
         trans_wfrec_closed [of _ _ _ "λn g. nat_case(v, λm. F(g`m), n)"])
done


subsection ‹lists without univ›

lemmas datatype_univs = Inl_in_univ Inr_in_univ 
                        Pair_in_univ nat_into_univ A_into_univ 

lemma list_fun_bnd_mono: "bnd_mono(univ(A), λX. {0} + A*X)"
apply (rule bnd_monoI)
 apply (intro subset_refl zero_subset_univ A_subset_univ 
              sum_subset_univ Sigma_subset_univ) 
apply (rule subset_refl sum_mono Sigma_mono | assumption)+
done

lemma list_fun_contin: "contin(λX. {0} + A*X)"
by (intro sum_contin prod_contin id_contin const_contin) 

text‹Re-expresses lists using sum and product›
lemma list_eq_lfp2: "list(A) = lfp(univ(A), λX. {0} + A*X)"
apply (simp add: list_def) 
apply (rule equalityI) 
 apply (rule lfp_lowerbound) 
  prefer 2 apply (rule lfp_subset)
 apply (clarify, subst lfp_unfold [OF list_fun_bnd_mono])
 apply (simp add: Nil_def Cons_def)
 apply blast 
txt‹Opposite inclusion›
apply (rule lfp_lowerbound) 
 prefer 2 apply (rule lfp_subset) 
apply (clarify, subst lfp_unfold [OF list.bnd_mono]) 
apply (simp add: Nil_def Cons_def)
apply (blast intro: datatype_univs
             dest: lfp_subset [THEN subsetD])
done

text‹Re-expresses lists using "iterates", no univ.›
lemma list_eq_Union:
     "list(A) = (nnat. (λX. {0} + A*X) ^ n (0))"
by (simp add: list_eq_lfp2 lfp_eq_Union list_fun_bnd_mono list_fun_contin)


definition
  is_list_functor :: "[i=>o,i,i,i] => o" where
    "is_list_functor(M,A,X,Z) == 
        n1[M]. AX[M]. 
         number1(M,n1) & cartprod(M,A,X,AX) & is_sum(M,n1,AX,Z)"

lemma (in M_basic) list_functor_abs [simp]: 
     "[| M(A); M(X); M(Z) |] ==> is_list_functor(M,A,X,Z)  (Z = {0} + A*X)"
by (simp add: is_list_functor_def singleton_0 nat_into_M)


subsection ‹formulas without univ›

lemma formula_fun_bnd_mono:
     "bnd_mono(univ(0), λX. ((nat*nat) + (nat*nat)) + (X*X + X))"
apply (rule bnd_monoI)
 apply (intro subset_refl zero_subset_univ A_subset_univ 
              sum_subset_univ Sigma_subset_univ nat_subset_univ) 
apply (rule subset_refl sum_mono Sigma_mono | assumption)+
done

lemma formula_fun_contin:
     "contin(λX. ((nat*nat) + (nat*nat)) + (X*X + X))"
by (intro sum_contin prod_contin id_contin const_contin) 


text‹Re-expresses formulas using sum and product›
lemma formula_eq_lfp2:
    "formula = lfp(univ(0), λX. ((nat*nat) + (nat*nat)) + (X*X + X))"
apply (simp add: formula_def) 
apply (rule equalityI) 
 apply (rule lfp_lowerbound) 
  prefer 2 apply (rule lfp_subset)
 apply (clarify, subst lfp_unfold [OF formula_fun_bnd_mono])
 apply (simp add: Member_def Equal_def Nand_def Forall_def)
 apply blast 
txt‹Opposite inclusion›
apply (rule lfp_lowerbound) 
 prefer 2 apply (rule lfp_subset, clarify) 
apply (subst lfp_unfold [OF formula.bnd_mono, simplified]) 
apply (simp add: Member_def Equal_def Nand_def Forall_def)  
apply (elim sumE SigmaE, simp_all) 
apply (blast intro: datatype_univs dest: lfp_subset [THEN subsetD])+  
done

text‹Re-expresses formulas using "iterates", no univ.›
lemma formula_eq_Union:
     "formula = 
      (nnat. (λX. ((nat*nat) + (nat*nat)) + (X*X + X)) ^ n (0))"
by (simp add: formula_eq_lfp2 lfp_eq_Union formula_fun_bnd_mono 
              formula_fun_contin)


definition
  is_formula_functor :: "[i=>o,i,i] => o" where
    "is_formula_functor(M,X,Z) == 
        nat'[M]. natnat[M]. natnatsum[M]. XX[M]. X3[M]. 
          omega(M,nat') & cartprod(M,nat',nat',natnat) & 
          is_sum(M,natnat,natnat,natnatsum) &
          cartprod(M,X,X,XX) & is_sum(M,XX,X,X3) & 
          is_sum(M,natnatsum,X3,Z)"

lemma (in M_trancl) formula_functor_abs [simp]: 
     "[| M(X); M(Z) |] 
      ==> is_formula_functor(M,X,Z)  
          Z = ((nat*nat) + (nat*nat)) + (X*X + X)"
by (simp add: is_formula_functor_def) 


subsectiontermM Contains the List and Formula Datatypes›

definition
  list_N :: "[i,i] => i" where
    "list_N(A,n) == (λX. {0} + A * X)^n (0)"

lemma Nil_in_list_N [simp]: "[]  list_N(A,succ(n))"
by (simp add: list_N_def Nil_def)

lemma Cons_in_list_N [simp]:
     "Cons(a,l)  list_N(A,succ(n))  aA & l  list_N(A,n)"
by (simp add: list_N_def Cons_def) 

text‹These two aren't simprules because they reveal the underlying
list representation.›
lemma list_N_0: "list_N(A,0) = 0"
by (simp add: list_N_def)

lemma list_N_succ: "list_N(A,succ(n)) = {0} + A * (list_N(A,n))"
by (simp add: list_N_def)

lemma list_N_imp_list:
  "[| l  list_N(A,n); n  nat |] ==> l  list(A)"
by (force simp add: list_eq_Union list_N_def)

lemma list_N_imp_length_lt [rule_format]:
     "n  nat ==> l  list_N(A,n). length(l) < n"
apply (induct_tac n)  
apply (auto simp add: list_N_0 list_N_succ 
                      Nil_def [symmetric] Cons_def [symmetric]) 
done

lemma list_imp_list_N [rule_format]:
     "l  list(A) ==> nnat. length(l) < n  l  list_N(A, n)"
apply (induct_tac l)
apply (force elim: natE)+
done

lemma list_N_imp_eq_length:
      "[|n  nat; l  list_N(A, n); l  list_N(A, succ(n))|] 
       ==> n = length(l)"
apply (rule le_anti_sym) 
 prefer 2 apply (simp add: list_N_imp_length_lt) 
apply (frule list_N_imp_list, simp)
apply (simp add: not_lt_iff_le [symmetric]) 
apply (blast intro: list_imp_list_N) 
done
  
text‹Express termlist_rec without using termrank or termVset,
neither of which is absolute.›
lemma (in M_trivial) list_rec_eq:
  "l  list(A) ==>
   list_rec(a,g,l) = 
   transrec (succ(length(l)),
      λx h. Lambda (list(A),
                    list_case' (a, 
                           λa l. g(a, l, h ` succ(length(l)) ` l)))) ` l"
apply (induct_tac l) 
apply (subst transrec, simp) 
apply (subst transrec) 
apply (simp add: list_imp_list_N) 
done

definition
  is_list_N :: "[i=>o,i,i,i] => o" where
    "is_list_N(M,A,n,Z) == 
      zero[M]. empty(M,zero) & 
                is_iterates(M, is_list_functor(M,A), zero, n, Z)"

definition  
  mem_list :: "[i=>o,i,i] => o" where
    "mem_list(M,A,l) == 
      n[M]. listn[M]. 
       finite_ordinal(M,n) & is_list_N(M,A,n,listn) & l  listn"

definition
  is_list :: "[i=>o,i,i] => o" where
    "is_list(M,A,Z) == l[M]. l  Z  mem_list(M,A,l)"

subsubsection‹Towards Absoluteness of termformula_rec

consts   depth :: "i=>i"
primrec
  "depth(Member(x,y)) = 0"
  "depth(Equal(x,y))  = 0"
  "depth(Nand(p,q)) = succ(depth(p)  depth(q))"
  "depth(Forall(p)) = succ(depth(p))"

lemma depth_type [TC]: "p  formula ==> depth(p)  nat"
by (induct_tac p, simp_all) 


definition
  formula_N :: "i => i" where
    "formula_N(n) == (λX. ((nat*nat) + (nat*nat)) + (X*X + X)) ^ n (0)"

lemma Member_in_formula_N [simp]:
     "Member(x,y)  formula_N(succ(n))  x  nat & y  nat"
by (simp add: formula_N_def Member_def) 

lemma Equal_in_formula_N [simp]:
     "Equal(x,y)  formula_N(succ(n))  x  nat & y  nat"
by (simp add: formula_N_def Equal_def) 

lemma Nand_in_formula_N [simp]:
     "Nand(x,y)  formula_N(succ(n))  x  formula_N(n) & y  formula_N(n)"
by (simp add: formula_N_def Nand_def) 

lemma Forall_in_formula_N [simp]:
     "Forall(x)  formula_N(succ(n))  x  formula_N(n)"
by (simp add: formula_N_def Forall_def) 

text‹These two aren't simprules because they reveal the underlying
formula representation.›
lemma formula_N_0: "formula_N(0) = 0"
by (simp add: formula_N_def)

lemma formula_N_succ:
     "formula_N(succ(n)) = 
      ((nat*nat) + (nat*nat)) + (formula_N(n) * formula_N(n) + formula_N(n))"
by (simp add: formula_N_def)

lemma formula_N_imp_formula:
  "[| p  formula_N(n); n  nat |] ==> p  formula"
by (force simp add: formula_eq_Union formula_N_def)

lemma formula_N_imp_depth_lt [rule_format]:
     "n  nat ==> p  formula_N(n). depth(p) < n"
apply (induct_tac n)  
apply (auto simp add: formula_N_0 formula_N_succ 
                      depth_type formula_N_imp_formula Un_least_lt_iff
                      Member_def [symmetric] Equal_def [symmetric]
                      Nand_def [symmetric] Forall_def [symmetric]) 
done

lemma formula_imp_formula_N [rule_format]:
     "p  formula ==> nnat. depth(p) < n  p  formula_N(n)"
apply (induct_tac p)
apply (simp_all add: succ_Un_distrib Un_least_lt_iff) 
apply (force elim: natE)+
done

lemma formula_N_imp_eq_depth:
      "[|n  nat; p  formula_N(n); p  formula_N(succ(n))|] 
       ==> n = depth(p)"
apply (rule le_anti_sym) 
 prefer 2 apply (simp add: formula_N_imp_depth_lt) 
apply (frule formula_N_imp_formula, simp)
apply (simp add: not_lt_iff_le [symmetric]) 
apply (blast intro: formula_imp_formula_N) 
done


text‹This result and the next are unused.›
lemma formula_N_mono [rule_format]:
  "[| m  nat; n  nat |] ==> mn  formula_N(m)  formula_N(n)"
apply (rule_tac m = m and n = n in diff_induct)
apply (simp_all add: formula_N_0 formula_N_succ, blast) 
done

lemma formula_N_distrib:
  "[| m  nat; n  nat |] ==> formula_N(m  n) = formula_N(m)  formula_N(n)"
apply (rule_tac i = m and j = n in Ord_linear_le, auto) 
apply (simp_all add: subset_Un_iff [THEN iffD1] subset_Un_iff2 [THEN iffD1] 
                     le_imp_subset formula_N_mono)
done

definition
  is_formula_N :: "[i=>o,i,i] => o" where
    "is_formula_N(M,n,Z) == 
      zero[M]. empty(M,zero) & 
                is_iterates(M, is_formula_functor(M), zero, n, Z)"


definition  
  mem_formula :: "[i=>o,i] => o" where
    "mem_formula(M,p) == 
      n[M]. formn[M]. 
       finite_ordinal(M,n) & is_formula_N(M,n,formn) & p  formn"

definition
  is_formula :: "[i=>o,i] => o" where
    "is_formula(M,Z) == p[M]. p  Z  mem_formula(M,p)"

subsubsection‹Absoluteness of the List Construction›


subsubsection‹Absoluteness of Formulas›


subsection‹Absoluteness for ε›-Closure: the termeclose Operator›

text‹Re-expresses eclose using "iterates"›
lemma eclose_eq_Union:
     "eclose(A) = (nnat. Union^n (A))"
apply (simp add: eclose_def)
apply (rule UN_cong)
apply (rule refl)
apply (induct_tac n)
apply (simp add: nat_rec_0)
apply (simp add: nat_rec_succ)
done

definition
  is_eclose_n :: "[i=>o,i,i,i] => o" where
    "is_eclose_n(M,A,n,Z) == is_iterates(M, big_union(M), A, n, Z)"

definition
  mem_eclose :: "[i=>o,i,i] => o" where
    "mem_eclose(M,A,l) ==
      n[M]. eclosen[M].
       finite_ordinal(M,n) & is_eclose_n(M,A,n,eclosen) & l  eclosen"

definition
  is_eclose :: "[i=>o,i,i] => o" where
    "is_eclose(M,A,Z) == u[M]. u  Z  mem_eclose(M,A,u)"


locale M_eclose = M_trancl +
 assumes eclose_replacement1:
   "M(A) ==> iterates_replacement(M, big_union(M), A)"
  and eclose_replacement2:
   "M(A) ==> strong_replacement(M,
         λn y. nnat & is_iterates(M, big_union(M), A, n, y))"

lemma (in M_eclose) eclose_replacement2':
  "M(A) ==> strong_replacement(M, λn y. nnat & y = Union^n (A))"
apply (insert eclose_replacement2 [of A])
apply (rule strong_replacement_cong [THEN iffD1])
apply (rule conj_cong [OF iff_refl iterates_abs [of "big_union(M)"]])
apply (simp_all add: eclose_replacement1 relation1_def)
done

lemma (in M_eclose) eclose_closed [intro,simp]:
     "M(A) ==> M(eclose(A))"
apply (insert eclose_replacement1)
by  (simp add: RepFun_closed2 eclose_eq_Union
               eclose_replacement2' relation1_def
               iterates_closed [of "big_union(M)"])

lemma (in M_eclose) is_eclose_n_abs [simp]:
     "[|M(A); nnat; M(Z)|] ==> is_eclose_n(M,A,n,Z)  Z = Union^n (A)"
apply (insert eclose_replacement1)
apply (simp add: is_eclose_n_def relation1_def nat_into_M
                 iterates_abs [of "big_union(M)" _ "Union"])
done

lemma (in M_eclose) mem_eclose_abs [simp]:
     "M(A) ==> mem_eclose(M,A,l)  l  eclose(A)"
apply (insert eclose_replacement1)
apply (simp add: mem_eclose_def relation1_def eclose_eq_Union
                 iterates_closed [of "big_union(M)"])
done

lemma (in M_eclose) eclose_abs [simp]:
     "[|M(A); M(Z)|] ==> is_eclose(M,A,Z)  Z = eclose(A)"
apply (simp add: is_eclose_def, safe)
apply (rule M_equalityI, simp_all)
done


subsection ‹Absoluteness for termtransrec

textproptransrec(a,H)  wfrec(Memrel(eclose({a})), a, H)

definition
  is_transrec :: "[i=>o, [i,i,i]=>o, i, i] => o" where
   "is_transrec(M,MH,a,z) ==
      sa[M]. esa[M]. mesa[M].
       upair(M,a,a,sa) & is_eclose(M,sa,esa) & membership(M,esa,mesa) &
       is_wfrec(M,MH,mesa,a,z)"

definition
  transrec_replacement :: "[i=>o, [i,i,i]=>o, i] => o" where
   "transrec_replacement(M,MH,a) ==
      sa[M]. esa[M]. mesa[M].
       upair(M,a,a,sa) & is_eclose(M,sa,esa) & membership(M,esa,mesa) &
       wfrec_replacement(M,MH,mesa)"

text‹The condition termOrd(i) lets us use the simpler
  trans_wfrec_abs› rather than trans_wfrec_abs›,
  which I haven't even proved yet.›
theorem (in M_eclose) transrec_abs:
  "[|transrec_replacement(M,MH,i);  relation2(M,MH,H);
     Ord(i);  M(i);  M(z);
     x[M]. g[M]. function(g)  M(H(x,g))|]
   ==> is_transrec(M,MH,i,z)  z = transrec(i,H)"
by (simp add: trans_wfrec_abs transrec_replacement_def is_transrec_def
       transrec_def eclose_sing_Ord_eq wf_Memrel trans_Memrel relation_Memrel)


theorem (in M_eclose) transrec_closed:
     "[|transrec_replacement(M,MH,i);  relation2(M,MH,H);
        Ord(i);  M(i);
        x[M]. g[M]. function(g)  M(H(x,g))|]
      ==> M(transrec(i,H))"
by (simp add: trans_wfrec_closed transrec_replacement_def is_transrec_def
        transrec_def eclose_sing_Ord_eq wf_Memrel trans_Memrel relation_Memrel)


text‹Helps to prove instances of termtransrec_replacement
lemma (in M_eclose) transrec_replacementI:
   "[|M(a);
      strong_replacement (M,
                  λx z. y[M]. pair(M, x, y, z) &
                               is_wfrec(M,MH,Memrel(eclose({a})),x,y))|]
    ==> transrec_replacement(M,MH,a)"
by (simp add: transrec_replacement_def wfrec_replacement_def)


subsection‹Absoluteness for the List Operator termlength
text‹But it is never used.›

definition
  is_length :: "[i=>o,i,i,i] => o" where
    "is_length(M,A,l,n) ==
       sn[M]. list_n[M]. list_sn[M].
        is_list_N(M,A,n,list_n) & l  list_n &
        successor(M,n,sn) & is_list_N(M,A,sn,list_sn) & l  list_sn"


text‹Proof is trivial since termlength returns natural numbers.›
lemma (in M_trivial) length_closed [intro,simp]:
     "l  list(A) ==> M(length(l))"
by (simp add: nat_into_M)


subsection ‹Absoluteness for the List Operator termnth

lemma nth_eq_hd_iterates_tl [rule_format]:
     "xs  list(A) ==> n  nat. nth(n,xs) = hd' (tl'^n (xs))"
apply (induct_tac xs)
apply (simp add: iterates_tl_Nil hd'_Nil, clarify)
apply (erule natE)
apply (simp add: hd'_Cons)
apply (simp add: tl'_Cons iterates_commute)
done

lemma (in M_basic) iterates_tl'_closed:
     "[|n  nat; M(x)|] ==> M(tl'^n (x))"
apply (induct_tac n, simp)
apply (simp add: tl'_Cons tl'_closed)
done

text‹Immediate by type-checking›
lemma (in M_trancl) nth_closed [intro,simp]:
     "[|xs  list(A); n  nat; M(A)|] ==> M(nth(n,xs))"
apply (case_tac "n < length(xs)")
 apply (blast intro: nth_type transM)
apply (simp add: not_lt_iff_le nth_eq_0)
done

subsection‹Relativization and Absoluteness for the termformula Constructors›

definition
  is_Member :: "[i=>o,i,i,i] => o" where
     ― ‹because termMember(x,y)  Inl(Inl(x,y))
    "is_Member(M,x,y,Z) ==
        p[M]. u[M]. pair(M,x,y,p) & is_Inl(M,p,u) & is_Inl(M,u,Z)"

lemma (in M_trivial) Member_abs [simp]:
     "[|M(x); M(y); M(Z)|] ==> is_Member(M,x,y,Z)  (Z = Member(x,y))"
by (simp add: is_Member_def Member_def)

lemma (in M_trivial) Member_in_M_iff [iff]:
     "M(Member(x,y))  M(x) & M(y)"
by (simp add: Member_def)

definition
  is_Equal :: "[i=>o,i,i,i] => o" where
     ― ‹because termEqual(x,y)  Inl(Inr(x,y))
    "is_Equal(M,x,y,Z) ==
        p[M]. u[M]. pair(M,x,y,p) & is_Inr(M,p,u) & is_Inl(M,u,Z)"

lemma (in M_trivial) Equal_abs [simp]:
     "[|M(x); M(y); M(Z)|] ==> is_Equal(M,x,y,Z)  (Z = Equal(x,y))"
by (simp add: is_Equal_def Equal_def)

lemma (in M_trivial) Equal_in_M_iff [iff]: "M(Equal(x,y))  M(x) & M(y)"
by (simp add: Equal_def)

definition
  is_Nand :: "[i=>o,i,i,i] => o" where
     ― ‹because termNand(x,y)  Inr(Inl(x,y))
    "is_Nand(M,x,y,Z) ==
        p[M]. u[M]. pair(M,x,y,p) & is_Inl(M,p,u) & is_Inr(M,u,Z)"

lemma (in M_trivial) Nand_abs [simp]:
     "[|M(x); M(y); M(Z)|] ==> is_Nand(M,x,y,Z)  (Z = Nand(x,y))"
by (simp add: is_Nand_def Nand_def)

lemma (in M_trivial) Nand_in_M_iff [iff]: "M(Nand(x,y))  M(x) & M(y)"
by (simp add: Nand_def)

definition
  is_Forall :: "[i=>o,i,i] => o" where
     ― ‹because termForall(x)  Inr(Inr(p))
    "is_Forall(M,p,Z) == u[M]. is_Inr(M,p,u) & is_Inr(M,u,Z)"

lemma (in M_trivial) Forall_abs [simp]:
     "[|M(x); M(Z)|] ==> is_Forall(M,x,Z)  (Z = Forall(x))"
by (simp add: is_Forall_def Forall_def)

lemma (in M_trivial) Forall_in_M_iff [iff]: "M(Forall(x))  M(x)"
by (simp add: Forall_def)



subsection ‹Absoluteness for termformula_rec

definition
  formula_rec_case :: "[[i,i]=>i, [i,i]=>i, [i,i,i,i]=>i, [i,i]=>i, i, i] => i" where
    ― ‹the instance of termformula_case in termformula_rec
   "formula_rec_case(a,b,c,d,h) ==
        formula_case (a, b,
                λu v. c(u, v, h ` succ(depth(u)) ` u,
                              h ` succ(depth(v)) ` v),
                λu. d(u, h ` succ(depth(u)) ` u))"

text‹Unfold termformula_rec to termformula_rec_case.
     Express termformula_rec without using termrank or termVset,
neither of which is absolute.›
lemma (in M_trivial) formula_rec_eq:
  "p  formula ==>
   formula_rec(a,b,c,d,p) =
   transrec (succ(depth(p)),
             λx h. Lambda (formula, formula_rec_case(a,b,c,d,h))) ` p"
apply (simp add: formula_rec_case_def)
apply (induct_tac p)
   txt‹Base case for termMember
   apply (subst transrec, simp add: formula.intros)
  txt‹Base case for termEqual
  apply (subst transrec, simp add: formula.intros)
 txt‹Inductive step for termNand
 apply (subst transrec)
 apply (simp add: succ_Un_distrib formula.intros)
txt‹Inductive step for termForall
apply (subst transrec)
apply (simp add: formula_imp_formula_N formula.intros)
done


subsubsection‹Absoluteness for the Formula Operator termdepth

definition
  is_depth :: "[i=>o,i,i] => o" where
    "is_depth(M,p,n) ==
       sn[M]. formula_n[M]. formula_sn[M].
        is_formula_N(M,n,formula_n) & p  formula_n &
        successor(M,n,sn) & is_formula_N(M,sn,formula_sn) & p  formula_sn"



text‹Proof is trivial since termdepth returns natural numbers.›
lemma (in M_trivial) depth_closed [intro,simp]:
     "p  formula ==> M(depth(p))"
by (simp add: nat_into_M)



end