Theory Discipline_Cardinal
section‹Basic relativization of cardinality›
theory Discipline_Cardinal
imports
Discipline_Function
begin
relativize functional "cardinal" "cardinal_rel" external
relationalize "cardinal_rel" "is_cardinal"
synthesize "is_cardinal" from_definition assuming "nonempty"
notation is_cardinal_fm (‹cardinal'(_') is _›)
abbreviation
cardinal_r :: "[i,i⇒o] ⇒ i" (‹|_|⇗_⇖›) where
"|x|⇗M⇖ ≡ cardinal_rel(M,x)"
abbreviation
cardinal_r_set :: "[i,i]⇒i" (‹|_|⇗_⇖›) where
"|x|⇗M⇖ ≡ cardinal_rel(##M,x)"
context M_trivial
begin
rel_closed for "cardinal"
using Least_closed'[of "λi. M(i) ∧ i ≈⇗M⇖ A"]
unfolding cardinal_rel_def
by simp
end
manual_arity intermediate for "is_Int_fm"
unfolding is_Int_fm_def
using arity pred_Un_distrib
by (simp)
arity_theorem for "is_Int_fm"
arity_theorem for "is_funspace_fm"
arity_theorem for "is_function_space_fm"
arity_theorem for "surjP_rel_fm"
arity_theorem intermediate for "is_surj_fm"
lemma arity_is_surj_fm [arity] :
"A ∈ nat ⟹ B ∈ nat ⟹ I ∈ nat ⟹ arity(is_surj_fm(A, B, I)) = succ(A) ∪ succ(B) ∪ succ(I)"
using arity_is_surj_fm' pred_Un_distrib
by auto
arity_theorem for "injP_rel_fm"
arity_theorem intermediate for "is_inj_fm"
lemma arity_is_inj_fm [arity]:
"A ∈ nat ⟹ B ∈ nat ⟹ I ∈ nat ⟹ arity(is_inj_fm(A, B, I)) = succ(A) ∪ succ(B) ∪ succ(I)"
using arity_is_inj_fm' pred_Un_distrib
by auto
arity_theorem for "is_bij_fm"
arity_theorem for "is_eqpoll_fm"
arity_theorem for "is_cardinal_fm"
context M_Perm
begin
is_iff_rel for "cardinal"
using least_abs'[of "λi. M(i) ∧ i ≈⇗M⇖ A"]
is_eqpoll_iff
unfolding is_cardinal_def cardinal_rel_def
by simp
end
reldb_add functional "Ord" "Ord"
reldb_add relational "Ord" "ordinal"
reldb_add functional "lt" "lt"
reldb_add relational "lt" "lt_rel"
synthesize "lt_rel" from_definition
notation lt_rel_fm (‹⋅_ < _⋅›)
arity_theorem intermediate for "lt_rel_fm"
lemma arity_lt_rel_fm[arity]: "a ∈ nat ⟹ b ∈ nat ⟹ arity(lt_rel_fm(a, b)) = succ(a) ∪ succ(b)"
using arity_lt_rel_fm'
by auto
relativize functional "Card" "Card_rel" external
relationalize "Card_rel" "is_Card"
synthesize "is_Card" from_definition assuming "nonempty"
notation is_Card_fm (‹⋅Card'(_')⋅›)
arity_theorem for "is_Card_fm"
notation Card_rel (‹Card⇗_⇖'(_')›)
lemma (in M_Perm) is_Card_iff: "M(A) ⟹ is_Card(M, A) ⟷ Card⇗M⇖(A)"
using is_cardinal_iff
unfolding is_Card_def Card_rel_def by simp
abbreviation
Card_r_set :: "[i,i]⇒o" (‹Card⇗_⇖'(_')›) where
"Card⇗M⇖(i) ≡ Card_rel(##M,i)"
relativize functional "InfCard" "InfCard_rel" external
relationalize "InfCard_rel" "is_InfCard"
synthesize "is_InfCard" from_definition assuming "nonempty"
notation is_InfCard_fm (‹⋅InfCard'(_')⋅›)
arity_theorem for "is_InfCard_fm"
notation InfCard_rel (‹InfCard⇗_⇖'(_')›)
abbreviation
InfCard_r_set :: "[i,i]⇒o" (‹InfCard⇗_⇖'(_')›) where
"InfCard⇗M⇖(i) ≡ InfCard_rel(##M,i)"
subsection‹Disicpline for \<^term>‹cadd››
relativize functional "cadd" "cadd_rel" external
abbreviation
cadd_r :: "[i,i⇒o,i] ⇒ i" (‹_ ⊕⇗_⇖ _› [66,1,66] 65) where
"A ⊕⇗M⇖ B ≡ cadd_rel(M,A,B)"
context M_basic
begin
rel_closed for "cadd"
using cardinal_rel_closed
unfolding cadd_rel_def
by simp
end
relationalize "cadd_rel" "is_cadd"
manual_schematic for "is_cadd" assuming "nonempty"
unfolding is_cadd_def
by (rule iff_sats sum_iff_sats | simp)+
synthesize "is_cadd" from_schematic
arity_theorem for "sum_fm"
arity_theorem for "is_cadd_fm"
context M_Perm
begin
is_iff_rel for "cadd"
using is_cardinal_iff
unfolding is_cadd_def cadd_rel_def
by simp
end
subsection‹Disicpline for \<^term>‹cmult››
relativize functional "cmult" "cmult_rel" external
abbreviation
cmult_r :: "[i,i⇒o,i] ⇒ i" (‹_ ⊗⇗_⇖ _› [66,1,66] 65) where
"A ⊗⇗M⇖ B ≡ cmult_rel(M,A,B)"
relationalize "cmult_rel" "is_cmult"
declare cartprod_iff_sats [iff_sats]
synthesize "is_cmult" from_definition assuming "nonempty"
arity_theorem for "is_cmult_fm"
context M_Perm
begin
rel_closed for "cmult"
using cardinal_rel_closed
unfolding cmult_rel_def
by simp
is_iff_rel for "cmult"
using is_cardinal_iff
unfolding is_cmult_def cmult_rel_def
by simp
end
end