Theory Finitely_Generated_Abelian_Groups.IDirProds
section ‹Internal direct product›
theory IDirProds
imports Generated_Groups_Extend General_Auxiliary
begin
subsection ‹Complementarity›
text ‹We introduce the notion of complementarity, that plays a central role in the internal
direct group product and prove some basic properties about it.›
definition (in group) complementary :: "'a set ⇒ 'a set ⇒ bool" where
"complementary H1 H2 ⟷ H1 ∩ H2 = {𝟭}"
lemma (in group) complementary_symm: "complementary A B ⟷ complementary B A"
unfolding complementary_def by blast
lemma (in group) subgroup_carrier_complementary:
assumes "complementary H J" "subgroup I (G⦇carrier := H⦈)" "subgroup K (G⦇carrier := J⦈)"
shows "complementary I K"
proof -
have "𝟭 ∈ I" "𝟭 ∈ K" using subgroup.one_closed assms by fastforce+
moreover have "I ∩ K ⊆ H ∩ J" using subgroup.subset assms by force
ultimately show ?thesis using assms unfolding complementary_def by blast
qed
lemma (in group) subgroup_subset_complementary:
assumes "subgroup H G" "subgroup J G" "subgroup I G"
and "I ⊆ J" "complementary H J"
shows "complementary H I"
by (intro subgroup_carrier_complementary[OF assms(5), of H I] subgroup_incl, use assms in auto)
lemma (in group) complementary_subgroup_iff:
assumes "subgroup H G"
shows "complementary A B ⟷ group.complementary (G⦇carrier := H⦈) A B"
proof -
interpret H: group "G⦇carrier := H⦈" using subgroup.subgroup_is_group assms by blast
have "𝟭⇘G⇙ = 𝟭⇘G⦇carrier := H⦈⇙" by simp
then show ?thesis unfolding complementary_def H.complementary_def by simp
qed
lemma (in group) subgroups_card_coprime_imp_compl:
assumes "subgroup H G" "subgroup J G" "coprime (card H) (card J)"
shows "complementary H J" unfolding complementary_def
proof -
interpret JH: subgroup "(H ∩ J)" G using assms subgroups_Inter_pair by blast
from subgroups_card_coprime_inter_card_one[OF assms] show "H ∩ J = {𝟭}" using JH.one_closed
by (metis card_1_singletonE singletonD)
qed
lemma (in group) prime_power_complementary_groups:
assumes "Factorial_Ring.prime p" "Factorial_Ring.prime q" "p ≠ q"
and "subgroup P G" "card P = p ^ x"
and "subgroup Q G" "card Q = q ^ y"
shows "complementary P Q"
proof -
from assms have "coprime (card P) (card Q)"
by (metis coprime_power_right_iff primes_coprime coprime_def)
then show ?thesis using subgroups_card_coprime_imp_compl assms complementary_def by blast
qed
text ‹With the previous work from the theory about set multiplication we can characterize
complementarity of two subgroups in abelian groups by the cardinality of their product.›
lemma (in comm_group) compl_imp_diff_cosets:
assumes "subgroup H G" "subgroup J G" "finite H" "finite J"
and "complementary H J"
shows "⋀a b. ⟦a ∈ J; b ∈ J; a ≠ b⟧ ⟹ (H #> a) ≠ (H #> b)"
proof (rule ccontr; safe)
fix a b
assume ab: "a ∈ J" "b ∈ J" "a ≠ b"
then have [simp]: "a ∈ carrier G" "b ∈ carrier G" using assms subgroup.subset by auto
assume "H #> a = H #> b"
then have "a ⊗ inv b ∈ H" using assms(1, 2) ab
by (metis comm_group_axioms comm_group_def rcos_self
subgroup.mem_carrier subgroup.rcos_module_imp)
moreover have "a ⊗ inv b ∈ J"
by (rule subgroup.m_closed[OF assms(2) ab(1) subgroup.m_inv_closed[OF assms(2) ab(2)]])
moreover have "a ⊗ inv b ≠ 𝟭" using ab inv_equality by fastforce
ultimately have "H ∩ J ≠ {𝟭}" by blast
thus False using assms(5) unfolding complementary_def by blast
qed
lemma (in comm_group) finite_sub_card_eq_mult_imp_comp:
assumes "subgroup H G" "subgroup J G" "finite H" "finite J"
and "card (H <#> J) = (card J * card H)"
shows "complementary H J"
unfolding complementary_def
proof (rule ccontr)
assume "H ∩ J ≠ {𝟭}"
have "𝟭 ∈ H" using subgroup.one_closed assms(1) by blast
moreover have "𝟭 ∈ J" using subgroup.one_closed assms(2) by blast
ultimately have "𝟭 ∈ (H ∩ J)" by blast
then obtain a where a_def: "a ∈ (H ∩ J) ∧ a ≠ 𝟭" using ‹H ∩ J ≠ {𝟭}› by blast
then have aH: "a ∈ H" by blast
then have a_inv_H: "inv a ∈ H ∧ inv a ≠ 𝟭" using assms(1)
by (meson a_def inv_eq_1_iff subgroup.mem_carrier subgroupE(3))
from a_def have aJ: "a ∈ J" by blast
then have a_inv_J: "inv a ∈ J ∧ inv a ≠ 𝟭" using assms(2)
by (meson a_def inv_eq_1_iff subgroup.mem_carrier subgroupE(3))
from a_def have a_c: "a ∈ carrier G" using subgroup.subset[of J G] assms(2) by blast
from set_mult_card_eq_impl_empty_inter'[of H J]
have empty: "⋀a b. ⟦a ∈ H; b ∈ H; a ≠ b⟧ ⟹ (l_coset G a J) ∩ (l_coset G b J) = {}"
using assms subgroup.subset[of _ G] by simp
have "𝟭 ∈ 𝟭 <# J" using ‹𝟭 ∈ J› unfolding l_coset_def by force
moreover have "𝟭 ∈ a <# J" using a_inv_J aJ a_c assms ‹𝟭 ∈ J› coset_join3 by blast
ultimately have "(l_coset G 𝟭 J) ∩ (l_coset G a J) ≠ {}" by blast
then show "False" using empty[of "𝟭" a] a_def aH ‹𝟭 ∈ H› by blast
qed
lemma (in comm_group) finite_sub_comp_imp_card_eq_mult:
assumes "subgroup H G" "subgroup J G" "finite H" "finite J"
and "complementary H J"
shows "card (H <#> J) = card J * card H"
proof -
have carr: "H ⊆ carrier G" "J ⊆ carrier G" using assms subgroup.subset by auto
from coset_neq_imp_empty_inter[OF assms(1)] compl_imp_diff_cosets[OF assms(1,2)]
have em_inter: "⋀a b. ⟦a ∈ J; b ∈ J; a ≠ b⟧ ⟹ (H #> a) ∩ (H #> b) = {}"
by (meson assms subgroup.mem_carrier)
have "card (⋃a∈J. (H #> a)) = card J * card H" using assms(4) carr(2) em_inter
proof (induction J rule: finite_induct)
case empty
then show ?case by auto
next
case i: (insert x F)
then have cF:"card (⋃ ((#>) H ` F)) = card F * card H" by blast
have xc[simp]: "x ∈ carrier G" using i(4) by simp
let ?J = "insert x F"
from i(2, 4, 5) have em:"(H #> x) ∩ (⋃y∈F. (H #> y)) = {}" by auto
have "finite (H #> x)"
by (meson carr(1) rcosetsI rcosets_finite assms(3) xc)
moreover have "finite (H <#> F)" using set_mult_finite[OF assms(3) i(1) carr(1)] i(4) by blast
moreover have "H <#> F = (⋃a∈F. (H #> a))"
unfolding set_mult_def using r_coset_def[of G H] by auto
ultimately have "card(H #> x) + card(⋃y∈F. (H #> y))
= card((H #> x) ∪ (⋃y∈F. (H #> y))) + card((H #> x) ∩ (⋃y∈F. (H #> y)))"
using card_Un_Int by auto
then have "card(H #> x) + card(⋃y∈F. (H #> y)) = card((H #> x) ∪ (⋃y∈F. (H #> y)))"
using i(5) em by simp
moreover have "card (H #> x) = card H"
using card_rcosets_equal[of _ H] rcosetsI[of H] carr(1) xc by metis
moreover have "card (insert x F) * card H = card F * card H + card H"
by (simp add: i)
ultimately show ?case using cF by simp
qed
moreover have "H <#> J = (⋃a∈J. (H #> a))"
unfolding set_mult_def using r_coset_def[of G H] by auto
ultimately show "card (H <#> J) = card J * card H" by argo
qed
lemma (in comm_group) finite_sub_comp_iff_card_eq_mult:
assumes "subgroup H G" "subgroup J G" "finite H" "finite J"
shows "card (H <#> J) = card J * card H ⟷ complementary H J"
using finite_sub_comp_imp_card_eq_mult[OF assms] finite_sub_card_eq_mult_imp_comp[OF assms]
by blast
subsection ‹‹IDirProd› - binary internal direct product›
text ‹We introduce the internal direct product formed by two subgroups (so in its binary form).›
definition IDirProd :: "('a, 'b) monoid_scheme ⇒ 'a set ⇒ 'a set ⇒ 'a set" where
"IDirProd G Y Z = generate G (Y ∪ Z)"
text ‹Some trivial lemmas about the binary internal direct product.›
lemma (in group) IDirProd_comm:
"IDirProd G A B = IDirProd G B A"
unfolding IDirProd_def by (simp add: sup_commute)
lemma (in group) IDirProd_empty_right:
assumes "A ⊆ carrier G"
shows "IDirProd G A {} = generate G A"
unfolding IDirProd_def by simp
lemma (in group) IDirProd_empty_left:
assumes "A ⊆ carrier G"
shows "IDirProd G {} A = generate G A"
unfolding IDirProd_def by simp
lemma (in group) IDirProd_one_right:
assumes "A ⊆ carrier G"
shows "IDirProd G A {𝟭} = generate G A"
unfolding IDirProd_def
proof
interpret sA: subgroup "(generate G A)" G using assms generate_is_subgroup by simp
interpret sAone: subgroup "(generate G (A ∪ {𝟭}))" G using assms generate_is_subgroup by simp
show "generate G (A ∪ {𝟭}) ⊆ generate G A"
using generate_subgroup_incl[of "A ∪ {𝟭}" "generate G A"]
generate.incl assms sA.one_closed sA.subgroup_axioms by fast
show "generate G A ⊆ generate G (A ∪ {𝟭})"
using mono_generate[of A "A ∪ {𝟭}"] by blast
qed
lemma (in group) IDirProd_one_left:
assumes "A ⊆ carrier G"
shows "IDirProd G {𝟭} A = generate G A"
using IDirProd_one_right[of A] assms unfolding IDirProd_def by force
lemma (in group) IDirProd_is_subgroup:
assumes "Y ⊆ carrier G" "Z ⊆ carrier G"
shows "subgroup (IDirProd G Y Z) G"
unfolding IDirProd_def using generate_is_subgroup[of "Y ∪ Z"] assms by simp
text ‹Using the theory about set multiplication we can also show the connection of the underlying
set in the internal direct product with the set multiplication in the case of an abelian group.
Together with the facts about complementarity and the set multiplication we can characterize
complementarity by the cardinality of the internal direct product and vice versa.›
lemma (in comm_group) IDirProd_eq_subgroup_mult:
assumes "subgroup H G" "subgroup J G"
shows "IDirProd G H J = H <#> J"
unfolding IDirProd_def
by (rule set_mult_eq_generate_subgroup[OF assms])
lemma (in comm_group) finite_sub_comp_iff_card_eq_IDirProd:
assumes "subgroup H G" "subgroup J G" "finite H" "finite J"
shows "card (IDirProd G H J) = card J * card H ⟷ complementary H J"
using finite_sub_comp_iff_card_eq_mult IDirProd_eq_subgroup_mult assms by presburger
subsection ‹‹IDirProds› - indexed internal direct product›
text ‹The indexed version of the internal direct product acting on a family of subgroups.›
definition IDirProds :: "('a, 'b) monoid_scheme ⇒ ('c ⇒ 'a set) ⇒ 'c set ⇒ 'a set" where
"IDirProds G S I = generate G (⋃(S ` I))"
text ‹Lemmas about the indexed internal direct product.›
lemma (in group) IDirProds_incl:
assumes "i ∈ I"
shows "S i ⊆ IDirProds G S I"
unfolding IDirProds_def using assms generate.incl[of _ "⋃(S ` I)" G] by blast
lemma (in group) IDirProds_empty:
"IDirProds G S {} = {𝟭}"
unfolding IDirProds_def using generate_empty by simp
lemma (in group) IDirProds_is_subgroup:
assumes "⋃(S ` I) ⊆ (carrier G)"
shows "subgroup (IDirProds G S I) G"
unfolding IDirProds_def using generate_is_subgroup[of "⋃(S ` I)"] assms by auto
lemma (in group) IDirProds_subgroup_id: "subgroup (S i) G ⟹ IDirProds G S {i} = S i"
by (simp add: generate_subgroup_id IDirProds_def)
lemma (in comm_group) IDirProds_Un:
assumes "∀i∈A. subgroup (S i) G" "∀j∈B. subgroup (S j) G"
shows "IDirProds G S (A ∪ B) = IDirProds G S A <#> IDirProds G S B"
proof -
have subset: "⋃ (S ` A) ⊆ carrier G" "⋃ (S ` B) ⊆ carrier G"
using subgroup.subset assms(1, 2) by blast+
have "IDirProds G S A <#> IDirProds G S B = IDirProd G (IDirProds G S A) (IDirProds G S B)"
using assms by (intro IDirProd_eq_subgroup_mult [symmetric] IDirProds_is_subgroup subset)
also have "… = generate G (⋃ (S ` A) ∪ IDirProds G S B)"
unfolding IDirProds_def IDirProd_def by (intro generate_idem' generate_incl subset)
also have "… = generate G (⋃(S ` A) ∪ ⋃(S ` B))"
unfolding IDirProds_def IDirProd_def
by (intro generate_idem'_right generate_incl subset)
also have "⋃(S ` A) ∪ ⋃(S ` B) = ⋃(S ` (A ∪ B))"
by blast
also have "generate G … = IDirProds G S (A ∪ B)"
unfolding IDirProds_def ..
finally show ?thesis ..
qed
lemma (in comm_group) IDirProds_finite:
assumes "finite I" "∀i∈I. subgroup (S i) G" "∀i∈I. finite (S i)"
shows "finite (IDirProds G S I)" using assms
proof (induction I rule: finite_induct)
case empty
thus ?case using IDirProds_empty[of S] by simp
next
case i: (insert x I)
interpret Sx: subgroup "S x" G using i by blast
have cx: "(S x) ⊆ carrier G" by force
have cI: "⋃(S ` I) ⊆ carrier G" using i subgroup.subset by blast
interpret subgroup "IDirProds G S I" G using IDirProds_is_subgroup[OF cI] .
have cIP: "(IDirProds G S I) ⊆ carrier G" by force
from i have f: "finite (S x)" "finite (IDirProds G S I)" "finite {x}" by blast+
from IDirProds_Un[of "{x}" S I]
have "IDirProds G S ({x} ∪ I) = IDirProds G S {x} <#> IDirProds G S I" using i by blast
also have "… = S x <#> IDirProds G S I"
using IDirProds_subgroup_id[of S x] Sx.subgroup_axioms by force
also have "finite (…)" using set_mult_finite[OF f(1, 2) cx cIP] .
finally show ?case unfolding insert_def by simp
qed
lemma (in comm_group) IDirProds_compl_imp_compl:
assumes "∀i ∈ I. subgroup (S i) G" and "subgroup H G"
assumes "complementary H (IDirProds G S I)" "i ∈ I"
shows "complementary H (S i)"
proof -
have "S i ⊆ IDirProds G S I" using assms IDirProds_incl by fast
then have "H ∩ (S i) ⊆ H ∩ IDirProds G S I" by blast
moreover have "𝟭 ∈ H ∩ (S i)" using subgroup.one_closed assms by auto
ultimately show "complementary H (S i)" using assms(3) unfolding complementary_def by blast
qed
text ‹Using the knowledge about the binary internal direct product, we can - in case that all
subgroups in the family have coprime orders - also derive the cardinality of the indexed internal
direct product.›
lemma (in comm_group) IDirProds_card:
assumes "finite I" "∀i∈I. subgroup (S i) G"
"∀i∈I. finite (S i)" "pairwise (λx y. coprime (card (S x)) (card (S y))) I"
shows "card (IDirProds G S I) = (∏i ∈ I. card (S i))" using assms
proof (induction I rule: finite_induct)
case empty
then show ?case using IDirProds_empty[of S] by simp
next
case i: (insert x I)
have sx: "subgroup (S x) G" using i(4) by blast
have cx: "(S x) ⊆ carrier G" using subgroup.subset[OF sx] .
have fx: "finite (S x)" using i by blast
have cI: "⋃(S ` I) ⊆ carrier G" using subgroup.subset[of _ G] i(4) by blast
from generate_is_subgroup[OF this] have sIP: "subgroup (IDirProds G S I) G"
unfolding IDirProds_def .
then have cIP: "(IDirProds G S I) ⊆ carrier G" using subgroup.subset by blast
have fIP: "finite (IDirProds G S I)" using IDirProds_finite[OF i(1)] i by blast
from i have ih: "card (IDirProds G S I) = (∏i∈I. card (S i))" unfolding pairwise_def by blast
hence cop: "coprime (card (IDirProds G S I)) (card (S x))"
proof -
have cFI0: "card (IDirProds G S I) ≠ 0" using finite_subgroup_card_neq_0[OF sIP fIP] .
moreover have cx0: "card (S x) ≠ 0" using finite_subgroup_card_neq_0[OF sx fx] .
moreover have "prime_factors (card (IDirProds G S I)) ∩ prime_factors (card (S x)) = {}"
proof (rule ccontr)
have n0: "⋀i. i ∈ I ⟹ card (S i) ≠ 0" using finite_subgroup_card_neq_0 i(4, 5) by blast
assume "prime_factors (card (IDirProds G S I)) ∩ prime_factors (card (S x)) ≠ {}"
moreover have "prime_factors (card (IDirProds G S I)) = ⋃(prime_factors ` (card ∘ S) ` I)"
using n0 prime_factors_Prod[OF i(1), of "card ∘ S"] by (subst ih; simp)
moreover have "⋀i. i ∈ I ⟹ prime_factors (card (S i)) ∩ prime_factors (card (S x)) = {}"
proof -
fix i
assume ind: "i ∈ I"
then have coPx: "coprime (card (S i)) (card (S x))"
using i(2, 6) unfolding pairwise_def by auto
have "card (S i) ≠ 0" using n0 ind by blast
from coprime_eq_empty_prime_inter[OF this cx0]
show "prime_factors (card (S i)) ∩ prime_factors (card (S x)) = {}" using coPx by blast
qed
ultimately show "False" by auto
qed
ultimately show ?thesis using coprime_eq_empty_prime_inter by blast
qed
have "card (IDirProds G S (insert x I)) = card (S x) * card (IDirProds G S I)"
proof -
from finite_sub_comp_iff_card_eq_IDirProd[OF sIP sx fIP fx]
subgroups_card_coprime_imp_compl[OF sIP sx cop]
have "card (IDirProd G (IDirProds G S I) (S x)) = card (S x) * card (IDirProds G S I)" by blast
moreover have "generate G (⋃ (S ` insert x I)) = generate G (generate G (⋃ (S ` I)) ∪ S x)"
by (simp add: Un_commute cI cx generate_idem'_right)
ultimately show ?thesis unfolding IDirProds_def IDirProd_def by argo
qed
also have "… = card (S x) * prod (card ∘ S) I" using ih by simp
also have "… = prod (card ∘ S) ({x} ∪ I)" using i.hyps by auto
finally show ?case by simp
qed
subsection "Complementary family of subgroups"
text ‹The notion of a complementary family is introduced. Note that the subgroups are complementary
not only to the other subgroups but to the product of the other subgroups.›
definition (in group) compl_fam :: "('c ⇒ 'a set) ⇒ 'c set ⇒ bool" where
"compl_fam S I = (∀i ∈ I. complementary (S i) (IDirProds G S (I - {i})))"
text ‹Some lemmas about ‹compl_fam›.›
lemma (in group) compl_fam_empty[simp]: "compl_fam S {}"
unfolding compl_fam_def by simp
lemma (in group) compl_fam_cong:
assumes "compl_fam (f ∘ g) A" "inj_on g A"
shows "compl_fam f (g ` A)"
proof -
have "((f ∘ g) ` (A - {i})) = (f ` (g ` A - {g i}))" if "i ∈ A" for i
using assms that unfolding inj_on_def comp_def by blast
thus ?thesis using assms unfolding compl_fam_def IDirProds_def complementary_def by simp
qed
text ‹We now connect ‹compl_fam› with ‹generate› as this will be its main application.›
lemma (in comm_group) compl_fam_imp_generate_inj:
assumes "gs ⊆ carrier G" "compl_fam (λg. generate G {g}) gs"
shows "inj_on (λg. generate G {g}) gs"
proof(rule, rule ccontr)
fix x y
assume xy: "x ∈ gs" "y ∈ gs" "x ≠ y"
have gen: "generate G (⋃g∈gs - {y}. generate G {g}) = generate G (gs - {y})"
by (intro generate_idem_Un, use assms in blast)
assume g: "generate G {x} = generate G {y}"
with xy have "generate G {y} ⊆ generate G (gs - {y})" using mono_generate[of "{x}" "gs - {y}"] by auto
with xy have gyo: "generate G {y} = {𝟭}" using assms(2) generate.one gen
unfolding compl_fam_def complementary_def IDirProds_def by blast
hence yo: "y = 𝟭" using generate_singleton_one by simp
from gyo g generate_singleton_one have xo: "x = 𝟭" by simp
from xy yo xo show False by blast
qed
lemma (in comm_group) compl_fam_generate_subset:
assumes "compl_fam (λg. generate G {g}) gs"
"gs ⊆ carrier G" "A ⊆ gs"
shows "compl_fam (λg. generate G {g}) A"
proof(unfold compl_fam_def complementary_def IDirProds_def, subst generate_idem_Un)
show "⋀i. A - {i} ⊆ carrier G" using assms by blast
have "generate G {i} ∩ generate G (A - {i}) = {𝟭}" if "i ∈ A" for i
proof -
have "𝟭 ∈ generate G {i} ∩ generate G (A - {i})" using generate.one by blast
moreover have "generate G (A - {i}) ⊆ generate G (gs - {i})"
by (intro mono_generate, use assms in fast)
moreover have "generate G {i} ∩ generate G (gs - {i}) = {𝟭}"
using assms that generate_idem_Un[of "gs - {i}"]
unfolding compl_fam_def IDirProds_def complementary_def by blast
ultimately show ?thesis by blast
qed
thus "∀i∈A. generate G {i} ∩ generate G (A - {i}) = {𝟭}" by auto
qed
subsection ‹‹is_idirprod››
text ‹In order to identify a group as the internal direct product of a family of subgroups, they all
have to be normal subgroups, complementary to the product of the rest of the subgroups and generate
all of the group - this is captured in the definition of ‹is_idirprod›.›
definition (in group) is_idirprod :: "'a set ⇒ ('c ⇒ 'a set) ⇒ 'c set ⇒ bool" where
"is_idirprod A S I = ((∀i ∈ I. S i ⊲ G) ∧ A = IDirProds G S I ∧ compl_fam S I)"
text ‹Very basic lemmas about ‹is_idirprod›.›
lemma (in comm_group) is_idirprod_subgroup_suffices:
assumes "A = IDirProds G S I" "∀i∈I. subgroup (S i) G" "compl_fam S I"
shows "is_idirprod A S I"
unfolding is_idirprod_def using assms subgroup_imp_normal by blast
lemma (in comm_group) is_idirprod_generate:
assumes "A = generate G gs" "gs ⊆ carrier G" "compl_fam (λg. generate G {g}) gs"
shows "is_idirprod A (λg. generate G {g}) gs"
proof(intro is_idirprod_subgroup_suffices)
show "A = IDirProds G (λg. generate G {g}) gs"
using assms generate_idem_Un[OF assms(2)] unfolding IDirProds_def by argo
show "∀i∈gs. subgroup (generate G {i}) G" using assms generate_is_subgroup by auto
show "compl_fam (λg. generate G {g}) gs" by fact
qed
lemma (in comm_group) is_idirprod_imp_compl_fam[simp]:
assumes "is_idirprod A S I"
shows "compl_fam S I"
using assms unfolding is_idirprod_def by blast
lemma (in comm_group) is_idirprod_generate_imp_generate[simp]:
assumes "is_idirprod A (λg. generate G {g}) gs"
shows "A = generate G gs"
proof -
have "gs ⊆ carrier G"
proof
show "g ∈ carrier G" if "g ∈ gs" for g
proof -
interpret g: subgroup "generate G {g}" G
using assms that normal_imp_subgroup unfolding is_idirprod_def by blast
show ?thesis using g.subset generate.incl by fast
qed
qed
thus ?thesis using assms generate_idem_Un unfolding is_idirprod_def IDirProds_def by presburger
qed
end