Theory Abstract_Substitution.Substitution_First_Order_Term

theory Substitution_First_Order_Term
  imports
    Substitution
    "First_Order_Terms.Unification"
begin

abbreviation is_ground_trm where
  "is_ground_trm t  vars_term t = {}"

lemma is_ground_iff: "is_ground_trm (t  γ)  (x  vars_term t. is_ground_trm (γ x))"
  by (induction t) simp_all

lemma is_ground_trm_iff_ident_forall_subst: "is_ground_trm t  (σ. t  σ = t)"
proof(induction t)
  case Var
  then show ?case 
    by auto
next
  case Fun

  moreover have "xs x σ. σ. map (λs. s  σ) xs = xs  x  set xs  x  σ = x"
    by (metis list.map_ident map_eq_conv)

  ultimately show ?case
    by (auto simp: map_idI)
qed

global_interpretation term_subst: substitution where
  subst = subst_apply_term and id_subst = Var and comp_subst = subst_compose and
  is_ground = is_ground_trm
proof unfold_locales
  show "x. x  Var = x"
    by simp
next
  show "x σ τ. x  σ s τ = x  σ  τ"
    by simp
next
  show "x. is_ground_trm x  σ. x  σ = x"
    using is_ground_trm_iff_ident_forall_subst ..
qed
                      
lemma term_subst_is_unifier_iff_unifiers:
  assumes "finite X"
  shows "term_subst.is_unifier μ X  μ  unifiers (X × X)"
  unfolding term_subst.is_unifier_iff_if_finite[OF assms] unifiers_def
  by simp

lemma term_subst_is_unifier_set_iff_unifiers:
  assumes "X XX. finite X"
  shows "term_subst.is_unifier_set μ XX  μ  unifiers (XXX. X × X)"
  using term_subst_is_unifier_iff_unifiers assms 
  unfolding term_subst.is_unifier_set_def unifiers_def 
  by fast

lemma term_subst_is_mgu_iff_is_mgu:
  assumes fin: "X XX. finite X"
  shows "term_subst.is_mgu μ XX  is_mgu μ (XXX. X × X)"
  unfolding term_subst.is_mgu_def is_mgu_def
  unfolding term_subst_is_unifier_set_iff_unifiers[OF fin]
  by auto

lemma term_subst_is_imgu_iff_is_imgu:
  assumes "X XX. finite X"
  shows "term_subst.is_imgu μ XX  is_imgu μ (XXX. X × X)"
  using term_subst_is_unifier_set_iff_unifiers[OF assms]
  unfolding term_subst.is_imgu_def is_imgu_def
  by auto

lemma range_vars_subset_if_is_imgu:
  assumes "term_subst.is_imgu μ XX" "XXX. finite X" "finite XX"
  shows "range_vars μ  (tXX. vars_term t)"
proof-
  have is_imgu: "is_imgu μ (XXX. X × X)"
    using term_subst_is_imgu_iff_is_imgu[of "XX"] assms
    by simp

  have finite_prod: "finite (XXX. X × X)"
    using assms
    by blast

  have "(eXXX. X × X. vars_term (fst e)  vars_term (snd e)) = (tXX. vars_term t)"
    by fastforce

  then show ?thesis
    using imgu_range_vars_subset[OF is_imgu finite_prod]
    by argo
qed

lemma term_subst_is_renaming_iff:
  "term_subst.is_renaming ρ  inj ρ  (x. is_Var (ρ x))"
proof (rule iffI)
  show "term_subst.is_renaming ρ  inj ρ  (x. is_Var (ρ x))"
    unfolding term_subst.is_renaming_def subst_compose_def inj_def
    by (smt (verit, ccfv_SIG) is_VarI subst_apply_eq_Var substitution_ops.is_renaming_def term.inject(1))
next
  show "inj ρ  (x. is_Var (ρ x))  term_subst.is_renaming ρ"
    unfolding term_subst.is_renaming_def
    using ex_inverse_of_renaming by metis
qed

lemma term_subst_is_renaming_iff_ex_inj_fun_on_vars:
  "term_subst.is_renaming ρ  (f. inj f  ρ = Var  f)"
proof (rule iffI)
  assume "term_subst.is_renaming ρ"
  hence "inj ρ" and all_Var: "x. is_Var (ρ x)"
    unfolding term_subst_is_renaming_iff by simp_all
  from all_Var obtain f where "x. ρ x = Var (f x)"
    by (metis comp_apply term.collapse(1))
  hence "ρ = Var  f"
    using x. ρ x = Var (f x)
    by (intro ext) simp
  moreover have "inj f"
      using inj ρ unfolding ρ = Var  f
      using inj_on_imageI2 by metis
  ultimately show "f. inj f  ρ = Var  f"
    by metis
next
  show "f. inj f  ρ = Var  f  term_subst.is_renaming ρ"
    unfolding term_subst_is_renaming_iff comp_apply inj_def
    by auto
qed

lemma ground_imgu_equals: 
  assumes "is_ground_trm t1" and "is_ground_trm t2" and "term_subst.is_imgu μ {{t1, t2}}"
  shows "t1 = t2"
  using assms
  using term_subst.ground_eq_ground_if_unifiable
  by (metis insertCI term_subst.is_imgu_def term_subst.is_unifier_set_def)

lemma the_mgu_is_unifier: 
  assumes "term  the_mgu term term' = term'  the_mgu term term'" 
  shows "term_subst.is_unifier (the_mgu term term') {term, term'}"
  using assms
  unfolding term_subst.is_unifier_def the_mgu_def
  by simp

lemma imgu_exists_extendable:
  fixes υ :: "('f, 'v) subst"
  assumes "term  υ = term'  υ" "P term term' (the_mgu term term')"
  obtains μ :: "('f, 'v) subst"
  where "υ = μ s υ" "term_subst.is_imgu μ {{term, term'}}" "P term term' μ"
proof
  have finite: "finite {term, term'}"
    by simp

  have "term_subst.is_unifier_set (the_mgu term term') {{term, term'}}"
    unfolding term_subst.is_unifier_set_def
    using the_mgu_is_unifier[OF the_mgu[OF assms(1), THEN conjunct1]]
    by simp

  moreover have
    "σ. term_subst.is_unifier_set σ {{term, term'}}  σ = the_mgu term term' s σ"
    unfolding term_subst.is_unifier_set_def
    using term_subst.is_unifier_iff_if_finite[OF finite] the_mgu
    by blast

  ultimately have is_imgu: "term_subst.is_imgu (the_mgu term term') {{term, term'}}"
    unfolding term_subst.is_imgu_def
    by metis

  show "υ = (the_mgu term term') s υ" 
    using the_mgu[OF assms(1)]
    by blast

  show "term_subst.is_imgu (the_mgu term term') {{term, term'}}"
    using is_imgu
    by blast

  show "P term term' (the_mgu term term')"
    using assms(2).
qed

lemma imgu_exists:
  fixes υ :: "('f, 'v) subst"
  assumes "term  υ = term'  υ"
  obtains μ :: "('f, 'v) subst"
  where "υ = μ s υ" "term_subst.is_imgu μ {{term, term'}}"
  using imgu_exists_extendable[OF assms, of "(λ_ _ _. True)"]
  by auto

(* The other way around it does not work! *)
lemma is_renaming_if_term_subst_is_renaming:
  assumes "term_subst.is_renaming ρ"
  shows "is_renaming ρ"
  using assms
  by (simp add: inj_on_def is_renaming_def term_subst_is_renaming_iff)

end