Theory HA
section ‹Syntax of Hierarchical Automata›
theory HA
imports SA
begin
subsection ‹Definitions›
definition
RootEx :: "[(('s,'e,'d)seqauto) set,
's ⇀ ('s,'e,'d) seqauto set] => bool" where
"RootEx F G = (∃! A. A ∈ F ∧ A ∉ ⋃ (ran G))"
definition
Root :: "[(('s,'e,'d)seqauto) set,
's ⇀ ('s,'e,'d) seqauto set]
=> ('s,'e,'d) seqauto" where
"Root F G = (@ A. A ∈ F ∧ A ∉ ⋃ (ran G))"
definition
MutuallyDistinct :: "(('s,'e,'d)seqauto) set => bool" where
"MutuallyDistinct F =
(∀ a ∈ F. ∀ b ∈ F. a ≠ b ⟶ (States a) ∩ (States b) = {})"
definition
OneAncestor :: "[(('s,'e,'d)seqauto) set,
's ⇀ ('s,'e,'d) seqauto set] => bool" where
"OneAncestor F G =
(∀ A ∈ F - {Root F G} .
∃! s. s ∈ (⋃ A' ∈ F - {A} . States A') ∧
A ∈ the (G s))"
definition
NoCycles :: "[(('s,'e,'d)seqauto) set,
's ⇀ ('s,'e,'d) seqauto set] => bool" where
"NoCycles F G =
(∀ S ∈ Pow (⋃ A ∈ F. States A).
S ≠ {} ⟶ (∃ s ∈ S. S ∩ (⋃ A ∈ the (G s). States A) = {}))"
definition
IsCompFun :: "[(('s,'e,'d)seqauto) set,
's ⇀ ('s,'e,'d) seqauto set] => bool" where
"IsCompFun F G = ((dom G = (⋃ A ∈ F. States A)) ∧
(⋃ (ran G) = (F - {Root F G})) ∧
(RootEx F G) ∧
(OneAncestor F G) ∧
(NoCycles F G))"
subsubsection ‹Well-formedness for the syntax of HA›
definition
HierAuto :: "['d data,
(('s,'e,'d)seqauto) set,
'e set,
's ⇀ (('s,'e,'d)seqauto) set]
=> bool" where
"HierAuto D F E G = ((⋃ A ∈ F. SAEvents A) ⊆ E ∧
MutuallyDistinct F ∧
finite F ∧
IsCompFun F G)"
lemma HierAuto_EmptySet:
"((@x. True),{Abs_seqauto ({@x. True}, (@x. True), {}, {})}, {},
Map.empty ( @x. True ↦ {})) ∈ {(D,F,E,G) | D F E G. HierAuto D F E G}"
apply (unfold HierAuto_def IsCompFun_def Root_def RootEx_def MutuallyDistinct_def
OneAncestor_def NoCycles_def)
apply auto
done
definition
"hierauto =
{(D,F,E,G) |
(D::'d data)
(F::(('s,'e,'d) seqauto) set)
(E::('e set))
(G::('s ⇀ (('s,'e,'d) seqauto) set)).
HierAuto D F E G}"
typedef ('s,'e,'d) hierauto =
"hierauto :: ('d data * ('s,'e,'d) seqauto set * 'e set * ('s ⇀ ('s,'e,'d) seqauto set)) set"
unfolding hierauto_def
apply (rule exI)
apply (rule HierAuto_EmptySet)
done
definition
SAs :: "(('s,'e,'d) hierauto) => (('s,'e,'d) seqauto) set" where
"SAs = fst o snd o Rep_hierauto"
definition
HAEvents :: "(('s,'e,'d) hierauto) => ('e set)" where
"HAEvents = fst o snd o snd o Rep_hierauto"
definition
CompFun :: "(('s,'e,'d) hierauto) => ('s ⇀ ('s,'e,'d) seqauto set)" where
"CompFun = (snd o snd o snd o Rep_hierauto)"
definition
HAStates :: "(('s,'e,'d) hierauto) => ('s set)" where
"HAStates HA = (⋃ A ∈ (SAs HA). States A)"
definition
HADelta :: "(('s,'e,'d) hierauto) => (('s,'e,'d)trans)set" where
"HADelta HA = (⋃ F ∈ (SAs HA). Delta F)"
definition
HAInitValue :: "(('s,'e,'d) hierauto) => 'd data" where
"HAInitValue == fst o Rep_hierauto"
definition
HAInitStates :: "(('s,'e,'d) hierauto) => 's set" where
"HAInitStates HA == ⋃ A ∈ (SAs HA). { InitState A }"
definition
HARoot :: "(('s,'e,'d) hierauto) => ('s,'e,'d)seqauto" where
"HARoot HA == Root (SAs HA) (CompFun HA)"
definition
HAInitState :: "(('s,'e,'d) hierauto) => 's" where
"HAInitState HA == InitState (HARoot HA)"
subsubsection ‹State successor function›
definition
Chi :: "('s,'e,'d)hierauto => 's => 's set" where
"Chi A == (λ S ∈ (HAStates A) .
{S'. ∃ SA ∈ (SAs A) . SA ∈ the ((CompFun A) S) ∧ S' ∈ States SA })"
definition
ChiRel :: "('s,'e,'d)hierauto => ('s *'s) set" where
"ChiRel A == { (S,S'). S ∈ HAStates A ∧ S' ∈ HAStates A ∧ S' ∈ (Chi A) S }"
definition
ChiPlus :: "('s,'e,'d)hierauto => ('s *'s) set" where
"ChiPlus A == (ChiRel A) ^+"
definition
ChiStar :: "('s,'e,'d)hierauto => ('s *'s) set" where
"ChiStar A == (ChiRel A) ^*"
definition
HigherPriority :: "[('s,'e,'d)hierauto,
('s,'e,'d)trans * ('s,'e,'d)trans] => bool" where
"HigherPriority A ==
λ (t,t') ∈ (HADelta A) × (HADelta A).
(source t',source t) ∈ ChiPlus A"
subsubsection ‹Configurations›
definition
InitConf :: "('s,'e,'d)hierauto => 's set" where
"InitConf A == (((((HAInitStates A) × (HAInitStates A)) ∩ (ChiRel A))^* )
`` {HAInitState A})"
definition
StepConf :: "[('s,'e,'d)hierauto, 's set,
('s,'e,'d)trans set] => 's set" where
"StepConf A C TS ==
(C - ((ChiStar A) `` (Source TS))) ∪
(Target TS) ∪
((ChiRel A) `` (Target TS)) ∩ (HAInitStates A) ∪
((((ChiRel A) ∩ ((HAInitStates A) × (HAInitStates A)))⇧+)
`` (((ChiRel A)`` (Target TS)) ∩ (HAInitStates A)))"
subsection ‹Lemmas›
lemma Rep_hierauto_tuple:
"Rep_hierauto HA = (HAInitValue HA, SAs HA, HAEvents HA, CompFun HA)"
by (unfold SAs_def HAEvents_def CompFun_def HAInitValue_def, simp)
lemma Rep_hierauto_select:
"(HAInitValue HA, SAs HA, HAEvents HA, CompFun HA): hierauto"
by (rule Rep_hierauto_tuple [THEN subst], rule Rep_hierauto)
lemma HierAuto_select [simp]:
"HierAuto (HAInitValue HA) (SAs HA) (HAEvents HA) (CompFun HA)"
by (cut_tac Rep_hierauto_select, unfold hierauto_def, simp)
subsubsection ‹‹HAStates››
lemma finite_HAStates [simp]:
"finite (HAStates HA)"
apply (cut_tac Rep_hierauto_select)
apply (unfold hierauto_def HierAuto_def)
apply auto
apply (simp add: HAStates_def)
apply (rule finite_UN_I)
apply fast
apply (rule finite_States)
done
lemma HAStates_SA_mem:
"⟦ SA ∈ SAs A; S ∈ States SA ⟧ ⟹ S ∈ HAStates A"
by (unfold HAStates_def, auto)
lemma ChiRel_HAStates [simp]:
"(a,b) ∈ ChiRel A ⟹ a ∈ HAStates A"
apply (unfold ChiRel_def)
apply auto
done
lemma ChiRel_HAStates2 [simp]:
"(a,b) ∈ ChiRel A ⟹ b ∈ HAStates A"
apply (unfold ChiRel_def)
apply auto
done
subsubsection ‹‹HAEvents››
lemma HAEvents_SAEvents_SAs:
"⋃(SAEvents ` (SAs HA)) ⊆ HAEvents HA"
apply (cut_tac Rep_hierauto_select)
apply (unfold hierauto_def HierAuto_def)
apply fast
done
subsubsection ‹‹NoCycles››
lemma NoCycles_EmptySet [simp]:
"NoCycles {} S"
by (unfold NoCycles_def, auto)
lemma NoCycles_HA [simp]:
"NoCycles (SAs HA) (CompFun HA)"
apply (cut_tac Rep_hierauto_select)
apply (unfold hierauto_def HierAuto_def IsCompFun_def)
apply auto
done
subsubsection ‹‹OneAncestor››
lemma OneAncestor_HA [simp]:
"OneAncestor (SAs HA) (CompFun HA)"
apply (cut_tac Rep_hierauto_select)
apply (unfold hierauto_def HierAuto_def IsCompFun_def)
apply auto
done
subsubsection ‹‹MutuallyDistinct››
lemma MutuallyDistinct_Single [simp]:
"MutuallyDistinct {SA}"
by (unfold MutuallyDistinct_def, auto)
lemma MutuallyDistinct_EmptySet [simp]:
"MutuallyDistinct {}"
by (unfold MutuallyDistinct_def, auto)
lemma MutuallyDistinct_Insert:
"⟦ MutuallyDistinct S; (States A) ∩ (⋃ B ∈ S. States B) = {} ⟧
⟹ MutuallyDistinct (insert A S)"
by (unfold MutuallyDistinct_def, safe, fast+)
lemma MutuallyDistinct_Union:
"⟦ MutuallyDistinct A; MutuallyDistinct B;
(⋃ C ∈ A. States C) ∩ (⋃ C ∈ B. States C) = {} ⟧
⟹ MutuallyDistinct (A ∪ B)"
by (unfold MutuallyDistinct_def, safe, blast+)
lemma MutuallyDistinct_HA [simp]:
"MutuallyDistinct (SAs HA)"
apply (cut_tac Rep_hierauto_select)
apply (unfold hierauto_def HierAuto_def IsCompFun_def)
apply auto
done
subsubsection ‹‹RootEx››
lemma RootEx_Root [simp]:
"RootEx F G ⟹ Root F G ∈ F"
apply (unfold RootEx_def Root_def)
apply (erule ex1E)
apply (erule conjE)
apply (rule someI2)
apply blast+
done
lemma RootEx_Root_ran [simp]:
"RootEx F G ⟹ Root F G ∉ ⋃ (ran G)"
apply (unfold RootEx_def Root_def)
apply (erule ex1E)
apply (erule conjE)
apply (rule someI2)
apply blast+
done
lemma RootEx_States_Subset [simp]:
"(RootEx F G) ⟹ States (Root F G) ⊆ (⋃ x ∈ F . States x)"
apply (unfold RootEx_def Root_def)
apply (erule ex1E)
apply (erule conjE)
apply (rule someI2)
apply fast
apply (unfold UNION_eq)
apply (simp add: subset_eq)
apply auto
done
lemma RootEx_States_notdisjunct [simp]:
"RootEx F G ⟹ States (Root F G) ∩ (⋃ x ∈ F . States x) ≠ {}"
apply (frule RootEx_States_Subset)
apply (case_tac "States (Root F G)={}")
prefer 2
apply fast
apply simp
done
lemma Root_neq_SA [simp]:
"⟦ RootEx F G; (⋃ x ∈ F . States x) ∩ States SA = {} ⟧ ⟹ Root F G ≠ SA"
apply (rule SA_States_disjunct)
apply (frule RootEx_States_Subset)
apply fast
done
lemma RootEx_HA [simp]:
"RootEx (SAs HA) (CompFun HA)"
apply (cut_tac Rep_hierauto_select)
apply (unfold hierauto_def HierAuto_def IsCompFun_def)
apply fast
done
subsubsection ‹‹HARoot››
lemma HARoot_SAs [simp]:
"(HARoot HA) ∈ SAs HA"
apply (unfold HARoot_def)
apply (cut_tac Rep_hierauto_select)
apply (unfold hierauto_def HierAuto_def)
apply auto
done
lemma States_HARoot_HAStates:
"States (HARoot HA) ⊆ HAStates HA"
apply (unfold HAStates_def)
apply auto
apply (rule_tac x="HARoot HA" in bexI)
apply auto
done
lemma SAEvents_HARoot_HAEvents:
"SAEvents (HARoot HA) ⊆ HAEvents HA"
apply (cut_tac Rep_hierauto_select)
apply (unfold hierauto_def HierAuto_def)
apply auto
apply (rename_tac S)
apply (unfold UNION_eq)
apply (simp add: subset_eq)
apply (erule_tac x=S in allE)
apply auto
done
lemma HARoot_ran_CompFun:
"HARoot HA ∉ Union (ran (CompFun HA))"
apply (unfold HARoot_def)
apply (cut_tac Rep_hierauto_select)
apply (unfold IsCompFun_def hierauto_def HierAuto_def)
apply fast
done
lemma HARoot_ran_CompFun2:
"S ∈ ran (CompFun HA) ⟶ HARoot HA ∉ S"
apply (unfold HARoot_def)
apply (cut_tac Rep_hierauto_select)
apply (unfold IsCompFun_def hierauto_def HierAuto_def)
apply fast
done
subsubsection ‹‹CompFun››
lemma IsCompFun_HA [simp]:
"IsCompFun (SAs HA) (CompFun HA)"
apply (cut_tac Rep_hierauto_select)
apply (unfold hierauto_def HierAuto_def)
apply auto
done
lemma dom_CompFun [simp]:
"dom (CompFun HA) = HAStates HA"
apply (cut_tac HA=HA in IsCompFun_HA)
apply (unfold IsCompFun_def HAStates_def)
apply auto
done
lemma ran_CompFun [simp]:
"Union (ran (CompFun HA)) = ((SAs HA) - {Root (SAs HA)(CompFun HA)})"
apply (cut_tac HA=HA in IsCompFun_HA)
apply (unfold IsCompFun_def)
apply fast
done
lemma ran_CompFun_subseteq:
"Union (ran (CompFun HA)) ⊆ (SAs HA)"
apply (cut_tac HA=HA in IsCompFun_HA)
apply (unfold IsCompFun_def)
apply fast
done
lemma ran_CompFun_is_not_SA:
"¬ Sas ⊆ (SAs HA) ⟹ Sas ∉ (ran (CompFun HA))"
apply (cut_tac HA=HA in IsCompFun_HA)
apply (unfold IsCompFun_def)
apply fast
done
lemma HAStates_HARoot_CompFun [simp]:
"S ∈ HAStates HA ⟹ HARoot HA ∉ the (CompFun HA S)"
apply (rule ran_dom_the)
back
apply (simp add: HARoot_ran_CompFun2 HARoot_def HAStates_def)+
done
lemma HAStates_CompFun_SAs:
"S ∈ HAStates A ⟹ the (CompFun A S) ⊆ SAs A"
apply auto
apply (rename_tac T)
apply (cut_tac HA=A in ran_CompFun)
apply (erule equalityE)
apply (erule_tac c=T in subsetCE)
apply (drule ran_dom_the)
apply auto
done
lemma HAStates_CompFun_notmem [simp]:
"⟦ S ∈ HAStates A; SA ∈ the (CompFun A S) ⟧ ⟹ S ∉ States SA"
apply (unfold HAStates_def)
apply auto
apply (rename_tac T)
apply (cut_tac HA=A in MutuallyDistinct_HA)
apply (unfold MutuallyDistinct_def)
apply (erule_tac x=SA in ballE)
apply (erule_tac x=T in ballE)
apply auto
prefer 2
apply (cut_tac A=A and S=S in HAStates_CompFun_SAs)
apply (unfold HAStates_def)
apply simp
apply fast
apply fast
apply (cut_tac HA=A in NoCycles_HA)
apply (unfold NoCycles_def)
apply (erule_tac x="{S}" in ballE)
apply auto
done
lemma CompFun_Int_disjoint:
"⟦ S ≠ T; S ∈ HAStates A; T ∈ HAStates A ⟧ ⟹ the (CompFun A T) ∩ the (CompFun A S) = {}"
apply auto
apply (rename_tac U)
apply (cut_tac HA=A in OneAncestor_HA)
apply (unfold OneAncestor_def)
apply (erule_tac x=U in ballE)
prefer 2
apply simp
apply (fold HARoot_def)
apply (frule HAStates_HARoot_CompFun)
apply simp
apply (frule HAStates_CompFun_SAs)
apply auto
apply (erule_tac x=S in allE)
apply (erule_tac x=T in allE)
apply auto
apply (cut_tac HA=A in NoCycles_HA)
apply (unfold NoCycles_def)
apply (simp only: HAStates_def)
apply safe
apply (erule_tac x="{S}" in ballE)
apply simp
apply fast
apply simp
apply (cut_tac HA=A in NoCycles_HA)
apply (unfold NoCycles_def)
apply (simp only: HAStates_def)
apply safe
apply (erule_tac x="{T}" in ballE)
apply simp
apply fast
apply simp
done
subsubsection ‹‹SAs››
lemma finite_SAs [simp]:
"finite (SAs HA)"
apply (cut_tac Rep_hierauto_select)
apply (unfold hierauto_def HierAuto_def)
apply fast
done
lemma HAStates_SAs_disjunct:
"HAStates HA1 ∩ HAStates HA2 = {} ⟹ SAs HA1 ∩ SAs HA2 = {}"
apply (unfold UNION_eq HAStates_def Int_def)
apply auto
apply (rename_tac SA)
apply (cut_tac SA=SA in EX_State_SA)
apply (erule exE)
apply auto
done
lemma HAStates_CompFun_SAs_mem [simp]:
"⟦ S ∈ HAStates A; T ∈ the (CompFun A S) ⟧ ⟹ T ∈ SAs A"
apply (cut_tac A=A and S=S in HAStates_CompFun_SAs)
apply auto
done
lemma SAs_States_HAStates:
"SA ∈ SAs A ⟹ States SA ⊆ HAStates A"
by (unfold HAStates_def, auto)
subsubsection ‹‹HAInitState››
lemma HAInitState_HARoot [simp]:
"HAInitState A ∈ States (HARoot A)"
by (unfold HAInitState_def, auto)
lemma HAInitState_HARoot2 [simp]:
"HAInitState A ∈ States (Root (SAs A) (CompFun A))"
by (fold HARoot_def, simp)
lemma HAInitStates_HAStates [simp]:
"HAInitStates A ⊆ HAStates A"
apply (unfold HAInitStates_def HAStates_def)
apply auto
done
lemma HAInitStates_HAStates2 [simp]:
"S ∈ HAInitStates A ⟹ S ∈ HAStates A"
apply (cut_tac A=A in HAInitStates_HAStates)
apply fast
done
lemma HAInitState_HAStates [simp]:
"HAInitState A ∈ HAStates A"
apply (unfold HAStates_def)
apply auto
apply (rule_tac x="HARoot A" in bexI)
apply auto
done
lemma HAInitState_HAInitStates [simp]:
"HAInitState A ∈ HAInitStates A"
by (unfold HAInitStates_def HAInitState_def, auto)
lemma CompFun_HAInitStates_HAStates [simp]:
"⟦ S ∈ HAStates A; SA ∈ the (CompFun A S) ⟧ ⟹ (InitState SA) ∈ HAInitStates A"
apply (unfold HAInitStates_def)
apply auto
done
lemma CompFun_HAInitState_HAInitStates [simp]:
"⟦ SA ∈ the (CompFun A (HAInitState A)) ⟧ ⟹ (InitState SA) ∈ HAInitStates A"
apply (unfold HAInitStates_def)
apply auto
apply (rule_tac x=SA in bexI)
apply auto
apply (cut_tac A=A and S="HAInitState A" in HAStates_CompFun_SAs)
apply auto
done
lemma HAInitState_notmem_States [simp]:
"⟦ S ∈ HAStates A; SA ∈ the (CompFun A S) ⟧ ⟹ HAInitState A ∉ States SA"
apply (cut_tac HA=A in MutuallyDistinct_HA)
apply (unfold MutuallyDistinct_def)
apply (erule_tac x=SA in ballE)
apply (erule_tac x="HARoot A" in ballE)
apply auto
done
lemma InitState_notmem_States [simp]:
"⟦ S ∈ HAStates A; SA ∈ the (CompFun A S);
T ∈ HAInitStates A; T ≠ InitState SA ⟧
⟹ T ∉ States SA"
apply (unfold HAInitStates_def)
apply auto
apply (rename_tac SAA)
apply (cut_tac HA=A in MutuallyDistinct_HA)
apply (unfold MutuallyDistinct_def)
apply (erule_tac x=SA in ballE)
apply (erule_tac x=SAA in ballE)
apply auto
done
lemma InitState_States_notmem [simp]:
"⟦ B ∈ SAs A; C ∈ SAs A; B ≠ C ⟧ ⟹ InitState B ∉ States C"
apply auto
apply (cut_tac HA=A in MutuallyDistinct_HA)
apply (unfold MutuallyDistinct_def)
apply force
done
lemma OneHAInitState_SAStates:
"⟦ S ∈ HAInitStates A; T ∈ HAInitStates A;
S ∈ States SA; T ∈ States SA; SA ∈ SAs A ⟧ ⟹
S = T"
apply (unfold HAInitStates_def)
apply auto
apply (rename_tac AA AAA)
apply (case_tac "AA = SA")
apply auto
apply (case_tac "AAA = SA")
apply auto
done
subsubsection ‹‹Chi››
lemma HARootStates_notmem_Chi [simp]:
"⟦ S ∈ HAStates A; T ∈ States (HARoot A) ⟧ ⟹ T ∉ Chi A S"
apply (unfold Chi_def restrict_def, auto)
apply (rename_tac SA)
apply (cut_tac HA="A" in MutuallyDistinct_HA)
apply (unfold MutuallyDistinct_def)
apply (erule_tac x="HARoot A" in ballE)
apply (erule_tac x="SA" in ballE)
apply auto
done
lemma SAStates_notmem_Chi [simp]:
"⟦ S ∈ States SA; T ∈ States SA;
SA ∈ SAs A ⟧ ⟹ T ∉ Chi A S"
apply (unfold Chi_def restrict_def, auto)
apply (rename_tac SAA)
apply (cut_tac HA="A" in MutuallyDistinct_HA)
apply (unfold MutuallyDistinct_def)
apply (erule_tac x="SAA" in ballE)
apply (erule_tac x="SA" in ballE)
apply auto
apply (unfold HAStates_def)
apply auto
done
lemma HAInitState_notmem_Chi [simp]:
"S ∈ HAStates A ⟹ HAInitState A ∉ Chi A S"
by (unfold Chi_def restrict_def, auto)
lemma Chi_HAStates [simp]:
"T ∈ HAStates A ⟹ (Chi A T) ⊆ HAStates A"
apply (unfold Chi_def restrict_def)
apply (auto)
apply (cut_tac A=A and S=T in HAStates_CompFun_SAs)
apply (unfold HAStates_def)
apply auto
done
lemma Chi_HAStates_Self [simp]:
"s ∈ HAStates a ⟹ s ∉ (Chi a s)"
by (unfold Chi_def restrict_def, auto)
lemma ChiRel_HAStates_Self [simp]:
"(s,s) ∉ (ChiRel a)"
by( unfold ChiRel_def, auto)
lemma HAStates_Chi_NoCycles:
"⟦ s ∈ HAStates a; t ∈ HAStates a; s ∈ Chi a t ⟧ ⟹ t ∉ Chi a s"
apply (unfold Chi_def restrict_def)
apply auto
apply (cut_tac HA=a in NoCycles_HA)
apply (unfold NoCycles_def)
apply (erule_tac x="{s,t}" in ballE)
apply auto
done
lemma HAStates_Chi_NoCycles_trans:
"⟦ s ∈ HAStates a; t ∈ HAStates a; u ∈ HAStates a;
t ∈ Chi a s; u ∈ Chi a t ⟧ ⟹ s ∉ Chi a u"
apply (unfold Chi_def restrict_def)
apply auto
apply (cut_tac HA=a in NoCycles_HA)
apply (unfold NoCycles_def)
apply (erule_tac x="{s,t,u}" in ballE)
prefer 2
apply simp
apply (unfold HAStates_def)
apply auto
done
lemma Chi_range_disjoint:
"⟦ S ≠ T; T ∈ HAStates A; S ∈ HAStates A; U ∈ Chi A S ⟧ ⟹ U ∉ Chi A T"
apply (frule CompFun_Int_disjoint)
apply auto
apply (unfold Chi_def restrict_def)
apply auto
apply (rename_tac SA SAA)
apply (cut_tac HA=A in MutuallyDistinct_HA)
apply (unfold MutuallyDistinct_def)
apply (erule_tac x=SA in ballE)
apply (erule_tac x=SAA in ballE)
apply auto
done
lemma SAStates_Chi_trans [rule_format]:
"⟦ U ∈ Chi A T; S ∈ Chi A U; T ∈ States SA;
SA ∈ SAs A; U ∈ HAStates A ⟧ ⟹ S ∉ States SA"
apply (frule HAStates_SA_mem)
apply auto
apply (unfold Chi_def restrict_def)
apply auto
apply (rename_tac SAA SAAA)
apply (cut_tac HA=A in NoCycles_HA)
apply (unfold NoCycles_def)
apply (erule_tac x="{U,T}" in ballE)
prefer 2
apply (simp only: HAStates_def)
apply auto
apply (cut_tac HA=A in MutuallyDistinct_HA)
apply (unfold MutuallyDistinct_def)
apply (rotate_tac -1)
apply (erule_tac x=SA in ballE)
apply (rotate_tac -1)
apply (erule_tac x=SAAA in ballE)
apply auto
done
subsubsection ‹‹ChiRel››
lemma finite_ChiRel [simp]:
"finite (ChiRel A)"
apply (rule_tac B="HAStates A × HAStates A" in finite_subset)
apply auto
done
lemma ChiRel_HAStates_subseteq [simp]:
"(ChiRel A) ⊆ (HAStates A × HAStates A)"
apply (unfold ChiRel_def Chi_def restrict_def)
apply auto
done
lemma ChiRel_CompFun:
"s ∈ HAStates a ⟹ ChiRel a `` {s} = (⋃ x ∈ the (CompFun a s). States x)"
apply (unfold ChiRel_def Chi_def restrict_def Image_def)
apply simp
apply auto
apply (frule HAStates_CompFun_SAs_mem)
apply fast
apply (unfold HAStates_def)
apply fast
done
lemma ChiRel_HARoot:
"⟦ (x,y) ∈ ChiRel A ⟧ ⟹ y ∉ States (HARoot A)"
apply (unfold ChiRel_def Chi_def)
apply auto
apply (rename_tac SA)
apply (frule HAStates_HARoot_CompFun)
apply (cut_tac HA=A in MutuallyDistinct_HA)
apply (unfold MutuallyDistinct_def)
apply auto
apply (erule_tac x=SA in ballE)
apply (erule_tac x="HARoot A" in ballE)
apply auto
done
lemma HAStates_CompFun_States_ChiRel:
"S ∈ HAStates A ⟹ ⋃ (States ` the (CompFun A S)) = ChiRel A `` {S}"
apply (unfold ChiRel_def Chi_def restrict_def)
apply auto
apply (drule HAStates_CompFun_SAs)
apply (subst HAStates_def)
apply fast
done
lemma HAInitState_notmem_Range_ChiRel [simp]:
"HAInitState A ∉ Range (ChiRel A)"
by (unfold ChiRel_def, auto)
lemma HAInitState_notmem_Range_ChiRel2 [simp]:
"(S,HAInitState A) ∉ (ChiRel A)"
by (unfold ChiRel_def, auto)
lemma ChiRel_OneAncestor_notmem:
"⟦ S ≠ T; (S,U) ∈ ChiRel A⟧ ⟹ (T,U) ∉ ChiRel A"
apply (unfold ChiRel_def)
apply auto
apply (simp only: Chi_range_disjoint)
done
lemma ChiRel_OneAncestor:
"⟦ (S1,U) ∈ ChiRel A; (S2,U) ∈ ChiRel A ⟧ ⟹ S1 = S2"
apply (rule notnotD, rule notI)
apply (simp add: ChiRel_OneAncestor_notmem)
done
lemma CompFun_ChiRel:
"⟦ S1 ∈ HAStates A; SA ∈ the (CompFun A S1);
S2 ∈ States SA ⟧ ⟹ (S1,S2) ∈ ChiRel A"
apply (unfold ChiRel_def Chi_def restrict_def)
apply auto
apply (cut_tac A=A and S=S1 in HAStates_CompFun_SAs)
apply (unfold HAStates_def)
apply auto
done
lemma CompFun_ChiRel2:
"⟦ (S,T) ∈ ChiRel A; T ∈ States SA; SA ∈ SAs A ⟧ ⟹ SA ∈ the (CompFun A S)"
apply (unfold ChiRel_def Chi_def restrict_def)
apply auto
apply (rename_tac SAA)
apply (cut_tac HA=A in MutuallyDistinct_HA)
apply (unfold MutuallyDistinct_def)
apply (erule_tac x=SA in ballE)
apply (rotate_tac -1)
apply (erule_tac x=SAA in ballE)
apply auto
done
lemma ChiRel_HAStates_NoCycles:
"(s,t) ∈ (ChiRel a) ⟹ (t,s) ∉ (ChiRel a)"
apply (unfold ChiRel_def)
apply auto
apply (frule HAStates_Chi_NoCycles)
apply auto
done
lemma HAStates_ChiRel_NoCycles_trans:
"⟦ (s,t) ∈ (ChiRel a); (t,u) ∈ (ChiRel a) ⟧ ⟹ (u,s) ∉ (ChiRel a)"
apply (unfold ChiRel_def)
apply auto
apply (frule HAStates_Chi_NoCycles_trans)
apply fast
back
back
prefer 3
apply fast
apply auto
done
lemma SAStates_ChiRel:
"⟦ S ∈ States SA; T ∈ States SA;
SA ∈ SAs A ⟧ ⟹ (S,T) ∉ (ChiRel A)"
by (unfold ChiRel_def, auto)
lemma ChiRel_SA_OneAncestor:
"⟦ (S,T) ∈ ChiRel A; T ∈ States SA;
U ∈ States SA; SA ∈ SAs A ⟧ ⟹
(S,U) ∈ ChiRel A"
apply (frule CompFun_ChiRel2)
apply auto
apply (rule CompFun_ChiRel)
apply auto
done
lemma ChiRel_OneAncestor2:
"⟦ S ∈ HAStates A; S ∉ States (HARoot A) ⟧ ⟹
∃! T. (T,S) ∈ ChiRel A"
apply (unfold ChiRel_def)
apply auto
prefer 2
apply (rename_tac T U)
prefer 2
apply (unfold Chi_def restrict_def)
apply auto
prefer 2
apply (rename_tac SA SAA)
prefer 2
apply (cut_tac HA=A in OneAncestor_HA)
apply (unfold OneAncestor_def)
apply (fold HARoot_def)
apply auto
apply (simp cong: rev_conj_cong)
apply (unfold HAStates_def)
apply auto
apply (rename_tac SA)
apply (erule_tac x=SA in ballE)
apply auto
apply (case_tac "T = U")
apply auto
apply (frule CompFun_Int_disjoint)
apply (unfold HAStates_def)
apply auto
apply (case_tac "SA=SAA")
apply auto
apply (cut_tac HA=A in MutuallyDistinct_HA)
apply (unfold MutuallyDistinct_def)
apply (erule_tac x=SAA in ballE)
apply (erule_tac x=SA in ballE)
apply auto
apply (cut_tac S=T and A=A in HAStates_CompFun_SAs)
apply (unfold HAStates_def)
apply fast
apply fast
apply (cut_tac S=U and A=A in HAStates_CompFun_SAs)
apply (unfold HAStates_def)
apply fast
apply fast
done
lemma HARootStates_notmem_Range_ChiRel [simp]:
"S ∈ States (HARoot A) ⟹ S ∉ Range (ChiRel A)"
by (unfold ChiRel_def, auto)
lemma ChiRel_int_disjoint:
"S ≠ T ⟹ (ChiRel A `` {S}) ∩ (ChiRel A `` {T}) = {}"
apply (unfold ChiRel_def)
apply auto
apply (simp only: Chi_range_disjoint)
done
lemma SAStates_ChiRel_trans [rule_format]:
"⟦ (S,U) ∈ (ChiRel A); (U,T) ∈ ChiRel A;
S ∈ States SA; SA ∈ SAs A ⟧ ⟹ T ∉ States SA"
apply auto
apply (unfold ChiRel_def)
apply auto
apply (frule SAStates_Chi_trans)
back
apply fast+
done
lemma HAInitStates_InitState_trancl:
" ⟦ S ∈ HAInitStates (HA ST); A ∈ the (CompFun (HA ST) S) ⟧ ⟹
(S, InitState A) ∈ (ChiRel (HA ST) ∩ HAInitStates (HA ST) × HAInitStates (HA ST))⇧+"
apply (case_tac "S ∈ HAStates (HA ST)")
apply (frule CompFun_ChiRel)
apply fast+
apply (rule InitState_States)
apply auto
apply (rule r_into_trancl')
apply auto
apply (rule CompFun_HAInitStates_HAStates)
apply auto
done
lemma HAInitStates_InitState_trancl2:
"⟦ S ∈ HAStates (HA ST); A ∈ the (CompFun (HA ST) S);
(x, S) ∈ (ChiRel (HA ST) ∩ HAInitStates (HA ST) × HAInitStates (HA ST))⇧+ ⟧
⟹ (x, InitState A) ∈ (ChiRel (HA ST) ∩ HAInitStates (HA ST) × HAInitStates (HA ST))⇧+"
apply (rule_tac a="x" and b="S" and r="ChiRel (HA ST) ∩ HAInitStates (HA ST) × HAInitStates (HA ST)" in converse_trancl_induct)
apply auto
prefer 2
apply (rename_tac T U)
prefer 2
apply (case_tac "S ∈ HAStates (HA ST)")
apply (frule CompFun_ChiRel)
apply fast
apply (rule InitState_States)
apply simp
apply (rule trancl_trans [of _ S])
apply (rule r_into_trancl')
apply auto
apply (rule r_into_trancl')
apply auto
apply (rule CompFun_HAInitStates_HAStates)
prefer 2
apply fast
apply (cut_tac A="HA ST" in HAInitStates_HAStates, fast)
apply (rule_tac y = U in trancl_trans)
apply (rule r_into_trancl')
apply auto
done
subsubsection ‹‹ChiPlus››
lemma ChiPlus_ChiRel [simp]:
"(S,T) ∈ ChiRel A ⟹ (S,T) ∈ ChiPlus A"
apply (unfold ChiPlus_def)
apply (frule r_into_trancl)
apply auto
done
lemma ChiPlus_HAStates [simp]:
"(ChiPlus A) ⊆ (HAStates A × HAStates A)"
apply (unfold ChiPlus_def)
apply (rule trancl_subset_Sigma)
apply auto
done
lemma ChiPlus_subset_States:
"ChiPlus a `` {t} ⊆ ⋃(States ` (SAs a))"
apply (cut_tac A=a in ChiPlus_HAStates)
apply (unfold HAStates_def)
apply auto
done
lemma finite_ChiPlus [simp]:
"finite (ChiPlus A)"
apply (rule_tac B="HAStates A × HAStates A" in finite_subset)
apply auto
done
lemma ChiPlus_OneAncestor:
"⟦ S ∈ HAStates A; S ∉ States (HARoot A) ⟧ ⟹
∃ T. (T,S) ∈ ChiPlus A"
apply (unfold ChiPlus_def)
apply (frule ChiRel_OneAncestor2)
apply auto
done
lemma ChiPlus_HAStates_Left:
"(S,T) ∈ ChiPlus A ⟹ S ∈ HAStates A"
apply (cut_tac A=A in ChiPlus_HAStates)
apply (unfold HAStates_def)
apply auto
done
lemma ChiPlus_HAStates_Right:
"(S,T) ∈ ChiPlus A ⟹ T ∈ HAStates A"
apply (cut_tac A=A in ChiPlus_HAStates)
apply (unfold HAStates_def)
apply auto
done
lemma ChiPlus_ChiRel_int [rule_format]:
"⟦ (T,S) ∈ (ChiPlus A)⟧ ⟹ (ChiPlus A `` {T}) ∩ (ChiRel A `` {S}) = (ChiRel A `` {S})"
apply (unfold ChiPlus_def)
apply (rule_tac a="T" and b="S" and r="(ChiRel A)" in converse_trancl_induct)
apply auto
done
lemma ChiPlus_ChiPlus_int [rule_format]:
"⟦ (T,S) ∈ (ChiPlus A)⟧ ⟹ (ChiPlus A `` {T}) ∩ (ChiPlus A `` {S}) = (ChiPlus A `` {S})"
apply (unfold ChiPlus_def)
apply (rule_tac a="T" and b="S" and r="(ChiRel A)" in converse_trancl_induct)
apply auto
done
lemma ChiPlus_ChiRel_NoCycle_1 [rule_format]:
"⟦ (T,S) ∈ ChiPlus A⟧ ⟹
(insert S (insert T ({U. (T,U) ∈ ChiPlus A ∧ (U,S) ∈ ChiPlus A}))) ∩ (ChiRel A `` {T}) ≠ {}"
apply (unfold ChiPlus_def)
apply (rule_tac a="T" and b="S" and r="(ChiRel A)" in converse_trancl_induct)
apply (unfold Image_def Int_def)
apply auto
done
lemma ChiPlus_ChiRel_NoCycle_2 [rule_format]:
"⟦ (T,S) ∈ ChiPlus A⟧ ⟹ (S,T) ∈ (ChiRel A) ⟶
(insert S (insert T ({U. (T,U) ∈ ChiPlus A ∧ (U,S) ∈ ChiPlus A}))) ∩ (ChiRel A `` {S}) ≠ {}"
apply (unfold ChiPlus_def)
apply (rule_tac a="T" and b="S" and r="(ChiRel A)" in converse_trancl_induct)
apply (unfold Image_def Int_def)
apply auto
done
lemma ChiPlus_ChiRel_NoCycle_3 [rule_format]:
"⟦ (T,S) ∈ ChiPlus A⟧ ⟹ (S,T) ∈ (ChiRel A) ⟶ (T,U) ∈ ChiPlus A ⟶ (U, S) ∈ ChiPlus A ⟶
(insert S (insert T ({U. (T,U) ∈ ChiPlus A ∧ (U,S) ∈ ChiPlus A}))) ∩ (ChiRel A `` {U}) ≠ {}"
apply (unfold ChiPlus_def)
apply (rule_tac a="T" and b="S" and r="(ChiRel A)" in trancl_induct)
apply (unfold Image_def Int_def, simp)
apply (rename_tac V)
prefer 2
apply (rename_tac V W)
prefer 2
apply (simp, safe)
apply (simp only: ChiRel_HAStates_NoCycles)
apply simp
apply (case_tac "(U,W) ∈ (ChiRel A)", fast, rotate_tac 5, frule tranclD3, fast, blast intro: trancl_into_trancl)+
done
lemma ChiPlus_ChiRel_NoCycle_4 [rule_format]:
"⟦ (T,S) ∈ ChiPlus A ⟧ ⟹ (S,T) ∈ (ChiRel A) ⟶ ((ChiPlus A ``{T}) ∩ (ChiRel A `` {S})) ≠ {}"
apply (unfold ChiPlus_def)
apply (rule_tac a="T" and b="S" and r="(ChiRel A)" in trancl_induct)
apply (unfold Image_def Int_def)
apply auto
apply (simp only: ChiRel_HAStates_NoCycles)
apply (rule_tac x=T in exI)
apply simp
apply (rule_tac x=T in exI)
apply simp
done
lemma ChiRel_ChiPlus_NoCycles:
"(S,T) ∈ (ChiRel A) ⟹ (T,S) ∉ (ChiPlus A)"
apply (cut_tac HA=A in NoCycles_HA)
apply (unfold NoCycles_def)
apply (erule_tac x="insert S (insert T ({U. (T,U) ∈ ChiPlus A ∧ (U,S) ∈ ChiPlus A}))" in ballE)
prefer 2
apply (simp add: ChiPlus_subset_States)
apply (cut_tac A=A in ChiPlus_HAStates)
apply (unfold HAStates_def)
apply auto
apply (frule ChiPlus_ChiRel_NoCycle_2)
apply fast
apply (simp add:ChiRel_CompFun)
apply (frule ChiPlus_ChiRel_NoCycle_1)
apply (simp add:ChiRel_CompFun)
apply (frule ChiPlus_ChiRel_NoCycle_3)
apply fast
apply fast
back
apply fast
apply (rename_tac V)
apply (case_tac "V ∈ HAStates A")
apply (simp add: ChiRel_CompFun)
apply (simp only: ChiPlus_HAStates_Right)
apply fast
done
lemma ChiPlus_ChiPlus_NoCycles:
"(S,T) ∈ (ChiPlus A) ⟹ (T,S) ∉ (ChiPlus A)"
apply (unfold ChiPlus_def)
apply (rule_tac a="S" and b="T" and r="(ChiRel A)" in trancl_induct)
apply fast
apply (frule ChiRel_ChiPlus_NoCycles)
apply (auto intro: trancl_into_trancl2 simp add:ChiPlus_def)
done
lemma ChiPlus_NoCycles [rule_format]:
"(S,T) ∈ (ChiPlus A) ⟹ S ≠ T"
apply (frule ChiPlus_ChiPlus_NoCycles)
apply auto
done
lemma ChiPlus_NoCycles_2 [simp]:
"(S,S) ∉ (ChiPlus A)"
apply (rule notI)
apply (frule ChiPlus_NoCycles)
apply fast
done
lemma ChiPlus_ChiPlus_NoCycles_2:
"⟦ (S,U) ∈ ChiPlus A; (U,T) ∈ ChiPlus A ⟧ ⟹ (T,S) ∉ ChiPlus A"
apply (rule ChiPlus_ChiPlus_NoCycles)
apply (auto intro: trancl_trans simp add: ChiPlus_def)
done
lemma ChiRel_ChiPlus_trans:
"⟦ (U,S) ∈ ChiPlus A; (S,T) ∈ ChiRel A⟧ ⟹ (U,T) ∈ ChiPlus A"
apply (unfold ChiPlus_def)
apply auto
done
lemma ChiRel_ChiPlus_trans2:
"⟦ (U,S) ∈ ChiRel A; (S,T) ∈ ChiPlus A ⟧ ⟹ (U,T) ∈ ChiPlus A"
apply (unfold ChiPlus_def)
apply auto
done
lemma ChiPlus_ChiRel_Ex [rule_format]:
"⟦ (S,T) ∈ ChiPlus A ⟧ ⟹ (S,T) ∉ ChiRel A ⟶
(∃ U. (S,U) ∈ ChiPlus A ∧ (U,T) ∈ ChiRel A)"
apply (unfold ChiPlus_def)
apply (rule_tac a="S" and b="T" and r="(ChiRel A)" in converse_trancl_induct)
apply auto
apply (rename_tac U)
apply (rule_tac x=U in exI)
apply auto
done
lemma ChiPlus_ChiRel_Ex2 [rule_format]:
"⟦ (S,T) ∈ ChiPlus A ⟧ ⟹ (S,T) ∉ ChiRel A ⟶
(∃ U. (S,U) ∈ ChiRel A ∧ (U,T) ∈ ChiPlus A)"
apply (unfold ChiPlus_def)
apply (rule_tac a="S" and b="T" and r="(ChiRel A)" in converse_trancl_induct)
apply auto
done
lemma HARootStates_Range_ChiPlus [simp]:
"⟦ S ∈ States (HARoot A) ⟧ ⟹ S ∉ Range (ChiPlus A)"
by (unfold ChiPlus_def, auto)
lemma HARootStates_Range_ChiPlus2 [simp]:
"⟦ S ∈ States (HARoot A) ⟧ ⟹ (x,S) ∉ (ChiPlus A)"
by (frule HARootStates_Range_ChiPlus, unfold Domain_converse [symmetric], fast)
lemma SAStates_ChiPlus_ChiRel_NoCycle_1 [rule_format]:
"⟦ (S,U) ∈ ChiPlus A; SA ∈ SAs A ⟧ ⟹ (U,T) ∈ (ChiRel A) ⟶ S ∈ States SA ⟶ T ∈ States SA ⟶
(insert S (insert U ({V. (S,V) ∈ ChiPlus A ∧ (V,U) ∈ ChiPlus A}))) ∩ (ChiRel A `` {U}) ≠ {}"
apply (unfold ChiPlus_def)
apply (rule_tac a="S" and b="U" and r="(ChiRel A)" in converse_trancl_induct)
apply (simp, safe)
apply (simp only: SAStates_ChiRel_trans)
apply (simp add:ChiRel_CompFun)
apply safe
apply (erule_tac x=SA in ballE)
apply (simp add: CompFun_ChiRel2)+
apply (simp add:Int_def, fast)
apply auto
apply (fold ChiPlus_def)
apply (rename_tac W)
apply (frule_tac U=U and T=U and S=W in ChiRel_ChiPlus_trans2)
apply auto
done
lemma SAStates_ChiPlus_ChiRel_NoCycle_2 [rule_format]:
"⟦ (S,U) ∈ ChiPlus A ⟧ ⟹ (U,T) ∈ (ChiRel A) ⟶
(insert S (insert U ({V. (S,V) ∈ ChiPlus A ∧ (V,U) ∈ ChiPlus A}))) ∩ (ChiRel A `` {S}) ≠ {}"
apply (unfold ChiPlus_def)
apply (rule_tac a="S" and b="U" and r="(ChiRel A)" in converse_trancl_induct)
apply (unfold Image_def Int_def)
apply auto
done
lemma SAStates_ChiPlus_ChiRel_NoCycle_3 [rule_format]:
"⟦ (S,U) ∈ ChiPlus A ⟧ ⟹ (U,T) ∈ (ChiRel A) ⟶ (S,s) ∈ ChiPlus A ⟶ (s,U) ∈ ChiPlus A ⟶
(insert S (insert U ({V. (S,V) ∈ ChiPlus A ∧ (V,U) ∈ ChiPlus A}))) ∩ (ChiRel A `` {s}) ≠ {}"
apply (unfold ChiPlus_def)
apply (rule_tac a="S" and b="U" and r="(ChiRel A)" in trancl_induct)
apply fast
apply (rename_tac W)
prefer 2
apply (rename_tac W X)
prefer 2
apply (unfold Image_def Int_def)
apply (simp, safe)
apply (fold ChiPlus_def)
apply (case_tac "(s,W) ∈ ChiRel A")
apply fast
apply (frule_tac S=s and T=W in ChiPlus_ChiRel_Ex2)
apply simp
apply safe
apply (rename_tac X)
apply (rule_tac x=X in exI)
apply (fast intro: ChiRel_ChiPlus_trans)
apply simp
apply (case_tac "(s,X) ∈ ChiRel A")
apply force
apply (frule_tac S=s and T=X in ChiPlus_ChiRel_Ex2)
apply simp
apply safe
apply (rename_tac Y)
apply (erule_tac x=Y in allE)
apply simp
apply (fast intro: ChiRel_ChiPlus_trans)
apply simp
apply (case_tac "(s,X) ∈ ChiRel A")
apply force
apply (frule_tac S=s and T=X in ChiPlus_ChiRel_Ex2)
apply simp
apply safe
apply (rename_tac Y)
apply (erule_tac x=Y in allE)
apply simp
apply (fast intro: ChiRel_ChiPlus_trans)
apply fastforce
apply simp
apply (erule_tac x=W in allE)
apply simp
apply simp
apply (rename_tac Y)
apply (erule_tac x=Y in allE)
apply simp
apply (fast intro: ChiRel_ChiPlus_trans)
done
lemma SAStates_ChiPlus_ChiRel_trans [rule_format]:
"⟦ (S,U) ∈ (ChiPlus A); (U,T) ∈ (ChiRel A); S ∈ States SA; SA ∈ SAs A ⟧ ⟹ T ∉ States SA"
apply (cut_tac HA=A in NoCycles_HA)
apply (unfold NoCycles_def)
apply (erule_tac x="insert S (insert U ({V. (S,V) ∈ ChiPlus A ∧ (V,U) ∈ ChiPlus A}))" in ballE)
prefer 2
apply (simp add: ChiPlus_subset_States)
apply (cut_tac A=A in ChiPlus_HAStates)
apply (unfold HAStates_def)
apply auto[1]
apply safe
apply fast
apply (frule SAStates_ChiPlus_ChiRel_NoCycle_2)
apply fast
apply (frule HAStates_SA_mem)
apply fast
apply (simp only:ChiRel_CompFun)
apply (frule SAStates_ChiPlus_ChiRel_NoCycle_1)
apply auto[3]
apply fast
apply (simp add:ChiRel_CompFun)
apply (frule SAStates_ChiPlus_ChiRel_NoCycle_3)
apply fast
apply fast
back
apply fast
apply (simp only:ChiPlus_HAStates_Left ChiRel_CompFun)
done
lemma SAStates_ChiPlus2 [rule_format]:
"⟦ (S,T) ∈ ChiPlus A; SA ∈ SAs A ⟧ ⟹ S ∈ States SA ⟶ T ∉ States SA"
apply (unfold ChiPlus_def)
apply (rule_tac a="S" and b="T" and r="(ChiRel A)" in trancl_induct)
apply auto
apply (rename_tac U)
apply (frule_tac S=S and T=U in SAStates_ChiRel)
apply auto
apply (fold ChiPlus_def)
apply (simp only: SAStates_ChiPlus_ChiRel_trans)
done
lemma SAStates_ChiPlus [rule_format]:
"⟦ S ∈ States SA; T ∈ States SA; SA ∈ SAs A ⟧ ⟹ (S,T) ∉ ChiPlus A"
apply auto
apply (simp only: SAStates_ChiPlus2)
done
lemma SAStates_ChiPlus_ChiRel_OneAncestor [rule_format]:
"⟦ T ∈ States SA; SA ∈ SAs A; (S,U) ∈ ChiPlus A⟧ ⟹ S ≠ T ⟶ S ∈ States SA ⟶ (T,U) ∉ ChiRel A"
apply (unfold ChiPlus_def)
apply (rule_tac a="S" and b="U" and r="(ChiRel A)" in trancl_induct)
apply auto
apply (simp add: ChiRel_OneAncestor_notmem)
apply (rename_tac V W)
apply (fold ChiPlus_def)
apply (case_tac "V=T")
apply (simp add: ChiRel_OneAncestor_notmem SAStates_ChiPlus)+
done
lemma SAStates_ChiPlus_OneAncestor [rule_format]:
"⟦ T ∈ States SA; SA ∈ SAs A; (S,U) ∈ ChiPlus A ⟧ ⟹ S ≠ T ⟶
S ∈ States SA ⟶ (T,U) ∉ ChiPlus A"
apply (unfold ChiPlus_def)
apply (rule_tac a="S" and b="U" and r="(ChiRel A)" in trancl_induct)
apply auto
apply (fold ChiPlus_def)
apply (rename_tac V)
apply (frule_tac T=S and S=T and U=V in SAStates_ChiPlus_ChiRel_OneAncestor)
apply auto
apply (rename_tac V W)
apply (frule_tac S=T and T=W in ChiPlus_ChiRel_Ex)
apply auto
apply (frule_tac T=T and S=S and U=W in SAStates_ChiPlus_ChiRel_OneAncestor)
apply auto
apply (rule ChiRel_ChiPlus_trans)
apply auto
apply (rename_tac X)
apply (case_tac "V=X")
apply simp
apply (simp add: ChiRel_OneAncestor_notmem)
done
lemma ChiRel_ChiPlus_OneAncestor [rule_format]:
"⟦ (T,U) ∈ ChiPlus A ⟧ ⟹ T ≠ S ⟶ (S,U) ∈ ChiRel A ⟶ (T,S) ∈ ChiPlus A"
apply (unfold ChiPlus_def)
apply (rule_tac a="T" and b="U" and r="(ChiRel A)" in trancl_induct)
apply auto
apply (fast intro:ChiRel_OneAncestor)
apply (rename_tac V W)
apply (case_tac "S=V")
apply auto
apply (fast intro:ChiRel_OneAncestor)
done
lemma ChiPlus_SA_OneAncestor [rule_format]:
"⟦ (S,T) ∈ ChiPlus A;
U ∈ States SA; SA ∈ SAs A ⟧ ⟹ T ∈ States SA ⟶
(S,U) ∈ ChiPlus A"
apply (unfold ChiPlus_def)
apply (rule_tac a="S" and b="T" and r="(ChiRel A)" in converse_trancl_induct)
apply auto
apply (frule ChiRel_SA_OneAncestor)
apply fast+
done
subsubsection ‹‹ChiStar››
lemma ChiPlus_ChiStar [simp]:
"⟦ (S,T) ∈ ChiPlus A ⟧ ⟹ (S,T) ∈ ChiStar A"
by (unfold ChiPlus_def ChiStar_def, auto)
lemma HARootState_Range_ChiStar [simp]:
"⟦ x ≠ S; S ∈ States (HARoot A) ⟧ ⟹ (x,S) ∉ (ChiStar A)"
apply (unfold ChiStar_def)
apply (subst rtrancl_eq_or_trancl)
apply (fold ChiPlus_def)
apply auto
done
lemma ChiStar_Self [simp]:
"(S,S) ∈ ChiStar A"
apply (unfold ChiStar_def)
apply simp
done
lemma ChiStar_Image [simp]:
"S ∈ M ⟹ S ∈ (ChiStar A `` M)"
apply (unfold Image_def)
apply (auto intro: ChiStar_Self)
done
lemma ChiStar_ChiPlus_noteq:
"⟦ S ≠ T; (S,T) ∈ ChiStar A ⟧ ⟹ (S,T) ∈ ChiPlus A"
apply (unfold ChiPlus_def ChiStar_def)
apply (simp add: rtrancl_eq_or_trancl)
done
lemma ChiRel_ChiStar_trans:
"⟦ (S,U) ∈ ChiStar A; (U,T) ∈ ChiRel A ⟧ ⟹ (S,T) ∈ ChiStar A"
apply (unfold ChiStar_def)
apply auto
done
subsubsection ‹‹InitConf››
lemma InitConf_HAStates [simp]:
"InitConf A ⊆ HAStates A"
apply (unfold InitConf_def HAStates_def)
apply auto
apply (rule rtrancl_induct)
back
apply auto
apply (rule_tac x="HARoot A" in bexI)
apply auto
apply (unfold HAStates_def ChiRel_def)
apply auto
done
lemma InitConf_HAStates2 [simp]:
"S ∈ InitConf A ⟹ S ∈ HAStates A"
apply (cut_tac A=A in InitConf_HAStates)
apply fast
done
lemma HAInitState_InitConf [simp]:
"HAInitState A ∈ InitConf A"
by (unfold HAInitState_def InitConf_def, auto)
lemma InitConf_HAInitState_HARoot:
"[| S ∈ InitConf A; S ≠ HAInitState A |] ==> S ∉ States (HARoot A)"
apply (unfold InitConf_def)
apply auto
apply (rule mp)
prefer 2
apply fast
back
apply (rule mp)
prefer 2
apply fast
back
back
apply (rule_tac b=S in rtrancl_induct)
apply auto
apply (simp add: ChiRel_HARoot)+
done
lemma InitConf_HARoot_HAInitState [simp]:
"⟦ S ∈ InitConf A; S ∈ States (HARoot A) ⟧ ⟹ S = HAInitState A"
apply (subst not_not [THEN sym])
apply (rule notI)
apply (simp add:InitConf_HAInitState_HARoot)
done
lemma HAInitState_CompFun_InitConf [simp]:
"[|SA ∈ the (CompFun A (HAInitState A)) |] ==> (InitState SA) ∈ InitConf A"
apply (unfold InitConf_def HAStates_def)
apply auto
apply (rule rtrancl_Int)
apply auto
apply (cut_tac A=A and S="HAInitState A" in HAStates_CompFun_States_ChiRel)
apply auto
apply (rule Image_singleton_iff [THEN subst])
apply (rotate_tac -1)
apply (drule sym)
apply simp
apply (rule_tac x=SA in bexI)
apply auto
done
lemma InitState_CompFun_InitConf:
"[| S ∈ HAStates A; SA ∈ the (CompFun A S); S ∈ InitConf A |] ==> (InitState SA) ∈ InitConf A"
apply (unfold InitConf_def)
apply auto
apply (rule_tac b=S in rtrancl_into_rtrancl)
apply fast
apply (frule rtrancl_Int1)
apply auto
apply (case_tac "S = HAInitState A")
apply simp
apply (rule rtrancl_mem_Sigma)
apply auto
apply (cut_tac A=A and S=S in HAStates_CompFun_States_ChiRel)
apply auto
apply (rule Image_singleton_iff [THEN subst])
apply (rotate_tac -1)
apply (drule sym)
apply simp
apply (rule_tac x=SA in bexI)
apply auto
done
lemma InitConf_HAInitStates:
"InitConf A ⊆ HAInitStates A"
apply (unfold InitConf_def)
apply (rule subsetI)
apply auto
apply (frule rtrancl_Int1)
apply (case_tac "x = HAInitState A")
apply simp
apply (rule rtrancl_mem_Sigma)
apply auto
done
lemma InitState_notmem_InitConf:
"[| SA ∈ the (CompFun A S); S ∈ InitConf A; T ∈ States SA;
T ≠ InitState SA |] ==> T ∉ InitConf A"
apply (frule InitConf_HAStates2)
apply (unfold InitConf_def)
apply auto
apply (rule mp)
prefer 2
apply fast
apply (rule mp)
prefer 2
apply fast
back
apply (rule mp)
prefer 2
apply fast
back
back
apply (rule mp)
prefer 2
apply fast
back
back
back
apply (rule mp)
prefer 2
apply fast
back
back
back
back
apply (rule mp)
prefer 2
apply fast
back
back
back
back
back
apply (rule_tac b=T in rtrancl_induct)
apply auto
done
lemma InitConf_CompFun_InitState [simp]:
"⟦ SA ∈ the (CompFun A S); S ∈ InitConf A; T ∈ States SA;
T ∈ InitConf A ⟧ ⟹ T = InitState SA"
apply (subst not_not [THEN sym])
apply (rule notI)
apply (frule InitState_notmem_InitConf)
apply auto
done
lemma InitConf_ChiRel_Ancestor:
"⟦ T ∈ InitConf A; (S,T) ∈ ChiRel A ⟧ ⟹ S ∈ InitConf A"
apply (unfold InitConf_def)
apply auto
apply (erule rtranclE)
apply auto
apply (rename_tac U)
apply (cut_tac A=A in HAInitState_notmem_Range_ChiRel)
apply auto
apply (case_tac "U = S")
apply (auto simp add: ChiRel_OneAncestor)
done
lemma InitConf_CompFun_Ancestor:
"⟦ S ∈ HAStates A; SA ∈ the (CompFun A S); T ∈ InitConf A; T ∈ States SA ⟧
⟹ S ∈ InitConf A"
apply (rule InitConf_ChiRel_Ancestor)
apply auto
apply (rule CompFun_ChiRel)
apply auto
done
subsubsection ‹‹StepConf››
lemma StepConf_EmptySet [simp]:
"StepConf A C {} = C"
by (unfold StepConf_def, auto)
end