Theory Sorted_Terms
section ‹Sorted Terms›
theory Sorted_Terms
imports Sorted_Sets "First_Order_Terms.Term"
begin
subsection ‹Overloaded Notations›
consts vars :: "'a ⇒ 'b set"
adhoc_overloading vars vars_term
consts map_vars :: "('a ⇒ 'b) ⇒ 'c ⇒ 'd"
adhoc_overloading map_vars "map_term (λx. x)"
lemma map_term_eq_Var: "map_term F V s = Var y ⟷ (∃x. s = Var x ∧ y = V x)"
by (cases s, auto)
lemma map_vars_id_iff: "map_vars f s = s ⟷ (∀x ∈ vars_term s. f x = x)"
by (induct s, auto simp: list_eq_iff_nth_eq all_set_conv_all_nth)
lemma map_var_term_id[simp]: "map_term (λx. x) id = id" by (auto simp: id_def[symmetric] term.map_id)
lemma map_term_eq_Fun:
"map_term F V s = Fun g ts ⟷ (∃f ss. s = Fun f ss ∧ g = F f ∧ ts = map (map_term F V) ss)"
by (cases s, auto)
declare domIff[iff del]
subsection ‹Sorted Signatures and Sorted Sets of Terms›
text ‹We view a sorted signature as a partial map
that assigns an output sort to the pair of a function symbol and a list of input sorts.›
type_synonym ('f,'s) ssig = "'f × 's list ⇀ 's"
definition fun_hastype :: "'f ⇒ 's ⇒ 't ⇒ ('f × 's ⇀ 't) ⇒ bool"
(‹(_ : /_ /→ /_ in/ _)› [50,61,61,50]50)
where "f : σ → τ in F ≡ F (f,σ) = Some τ"
lemmas fun_hastypeI = fun_hastype_def[unfolded atomize_eq, THEN iffD2]
lemmas fun_hastypeD = fun_hastype_def[unfolded atomize_eq, THEN iffD1]
lemma fun_hastype_imp_dom[simp]:
assumes "f : σ → τ in F" shows "(f,σ) ∈ dom F"
using assms by (auto simp: fun_hastype_def domIff)
lemma in_dom_fun_hastypeE:
assumes "(f,σ) ∈ dom F" and "⋀τ. f : σ → τ in F ⟹ thesis" shows thesis
using assms by (auto simp: fun_hastype_def dom_def)
lemma fun_has_same_type:
assumes "f : σ → τ in F" and "f : σ → τ' in F" shows "τ = τ'"
using assms by (auto simp: fun_hastype_def)
lemma fun_hastype_empty[simp]: "¬ f : σ → τ in ∅"
by (auto simp: fun_hastype_def)
lemma fun_hastype_upd: "f : σ → τ in F((f',σ') ↦ τ') ⟷
(if f = f' ∧ σ = σ' then τ = τ' else f : σ → τ in F)"
by (auto simp: fun_hastype_def)
lemma fun_hastype_restrict: "f : σ → τ in F |` S ⟷ (f,σ) ∈ S ∧ f : σ → τ in F"
by (auto simp: restrict_map_def fun_hastype_def)
lemma subssigI: assumes "⋀f σ τ. f : σ → τ in F ⟹ f : σ → τ in F'"
shows "F ⊆⇩m F'"
using assms by (auto simp: map_le_def fun_hastype_def dom_def)
lemma subssigD: assumes FF: "F ⊆⇩m F'" and "f : σ → τ in F" shows "f : σ → τ in F'"
using assms by (auto simp: map_le_def fun_hastype_def dom_def)
text ‹The sorted set of terms:›
primrec Term (‹𝒯'(_,_')›) where
"𝒯(F,V) (Var v) = V v"
| "𝒯(F,V) (Fun f ss) =
(case those (map 𝒯(F,V) ss) of None ⇒ None | Some σs ⇒ F (f,σs))"
lemma Var_hastype[simp]: "Var v : σ in 𝒯(F,V) ⟷ v : σ in V"
by (auto simp: hastype_def)
lemma Fun_hastype:
"Fun f ss : τ in 𝒯(F,V) ⟷ (∃σs. f : σs → τ in F ∧ ss :⇩l σs in 𝒯(F,V))"
apply (unfold hastype_list_iff_those)
by (auto simp: fun_hastype_def hastype_def split:option.split_asm)
lemma Fun_in_dom_imp_arg_in_dom: "Fun f ss ∈ dom 𝒯(F,V) ⟹ s ∈ set ss ⟹ s ∈ dom 𝒯(F,V)"
by (auto simp: in_dom_iff_ex_type Fun_hastype list_all2_conv_all_nth in_set_conv_nth)
lemma Fun_hastypeI: "f : σs → τ in F ⟹ ss :⇩l σs in 𝒯(F,V) ⟹ Fun f ss : τ in 𝒯(F,V)"
by (auto simp: Fun_hastype)
lemma hastype_in_Term_induct[case_names Var Fun, induct pred]:
assumes s: "s : σ in 𝒯(F,V)"
and V: "⋀v σ. v : σ in V ⟹ P (Var v) σ"
and F: "⋀f ss σs τ.
f : σs → τ in F ⟹ ss :⇩l σs in 𝒯(F,V) ⟹ list_all2 P ss σs ⟹ P (Fun f ss) τ"
shows "P s σ"
proof (insert s, induct s arbitrary: σ rule:term.induct)
case (Var v σ)
with V[of v σ] show ?case by auto
next
case (Fun f ss τ)
then obtain σs where f: "f : σs → τ in F" and ss: "ss :⇩l σs in 𝒯(F,V)" by (auto simp:Fun_hastype)
show ?case
proof (rule F[OF f ss], unfold list_all2_conv_all_nth, safe)
from ss show len: "length ss = length σs" by (auto dest: list_all2_lengthD)
fix i assume i: "i < length ss"
with ss have *: "ss ! i : σs ! i in 𝒯(F,V)" by (auto simp: list_all2_conv_all_nth)
from i have ssi: "ss ! i ∈ set ss" by auto
from Fun(1)[OF this *]
show "P (ss ! i) (σs ! i)".
qed
qed
lemma in_dom_Term_induct[case_names Var Fun, induct pred]:
assumes s: "s ∈ dom 𝒯(F,V)"
assumes V: "⋀v σ. v : σ in V ⟹ P (Var v)"
assumes F: "⋀f ss σs τ.
f : σs → τ in F ⟹ ss :⇩l σs in 𝒯(F,V) ⟹ ∀s ∈ set ss. P s ⟹ P (Fun f ss)"
shows "P s"
proof-
from s obtain σ where "s : σ in 𝒯(F,V)" by (auto elim!:in_dom_hastypeE)
then show ?thesis
by (induct rule: hastype_in_Term_induct, auto intro!: V F simp: list_all2_indep2)
qed
lemma Term_mono_left: assumes FF: "F ⊆⇩m F'" shows "𝒯(F,V) ⊆⇩m 𝒯(F',V)"
proof (intro subssetI, elim hastype_in_Term_induct, goal_cases)
case (1 a σ v σ')
then show ?case by auto
next
case (2 a σ f ss σs τ)
then show ?case
by (auto intro!:exI[of _ σs] dest!: subssigD[OF FF] simp: Fun_hastype)
qed
lemmas hastype_in_Term_mono_left = Term_mono_left[THEN subssetD]
lemmas dom_Term_mono_left = Term_mono_left[THEN map_le_implies_dom_le]
lemma Term_mono_right: assumes VV: "V ⊆⇩m V'" shows "𝒯(F,V) ⊆⇩m 𝒯(F,V')"
proof (intro subssetI, elim hastype_in_Term_induct, goal_cases)
case (1 a σ v σ')
with VV show ?case by (auto dest!:subssetD)
next
case (2 a σ f ss σs τ)
then show ?case
by (auto intro!:exI[of _ σs] simp: Fun_hastype)
qed
lemmas hastype_in_Term_mono_right = Term_mono_right[THEN subssetD]
lemmas dom_Term_mono_right = Term_mono_right[THEN map_le_implies_dom_le]
lemmas Term_mono = map_le_trans[OF Term_mono_left Term_mono_right]
lemmas hastype_in_Term_mono = Term_mono[THEN subssetD]
lemmas dom_Term_mono = Term_mono[THEN map_le_implies_dom_le]
lemma hastype_in_Term_restrict_vars: "s : σ in 𝒯(F, V |` vars s) ⟷ s : σ in 𝒯(F,V)"
(is "?l s ⟷ ?r s")
proof (rule iffI)
assume "?l s"
from hastype_in_Term_mono_right[OF restrict_submap this]
show "?r s".
next
show "?r s ⟹ ?l s"
proof (induct rule: hastype_in_Term_induct)
case (Var v σ)
then show ?case by (auto simp:hastype_restrict)
next
case (Fun f ss σs τ)
have "ss :⇩l σs in 𝒯(F,V |` vars (Fun f ss))"
apply (rule list.rel_mono_strong[OF Fun(3) hastype_in_Term_mono_right])
by (auto intro: restrict_map_mono_right)
with Fun show ?case
by (auto simp:Fun_hastype)
qed
qed
lemma hastype_in_Term_imp_vars: "s : σ in 𝒯(F,V) ⟹ v ∈ vars s ⟹ v ∈ dom V"
proof (induct s σ rule: hastype_in_Term_induct)
case (Var v σ)
then show ?case by auto
next
case (Fun f ss σs τ)
then obtain i where i: "i < length ss" and v: "v ∈ vars (ss!i)" by (auto simp:in_set_conv_nth)
from Fun(3) i v
show ?case by (auto simp: list_all2_conv_all_nth)
qed
lemma in_dom_Term_imp_vars: "s ∈ dom 𝒯(F,V) ⟹ v ∈ vars s ⟹ v ∈ dom V"
by (auto elim!: in_dom_hastypeE simp: hastype_in_Term_imp_vars)
lemma hastype_in_Term_imp_vars_subset: "t : s in 𝒯(F,V) ⟹ vars t ⊆ dom V"
by (auto dest: hastype_in_Term_imp_vars)
interpretation Var: sorted_map Var V "𝒯(F,V)" for F V by (auto intro!: sorted_mapI)
subsection ‹Sorted Algebras›
locale sorted_algebra_syntax =
fixes F :: "('f,'s) ssig" and A :: "'a ⇀ 's" and I :: "'f ⇒ 'a list ⇒ 'a"
locale sorted_algebra = sorted_algebra_syntax +
assumes sort_matches: "f : σs → τ in F ⟹ as :⇩l σs in A ⟹ I f as : τ in A"
begin
context
fixes α V
assumes α: "α :⇩s V → A"
begin
lemma eval_hastype:
assumes s: "s : σ in 𝒯(F,V)" shows "I⟦s⟧α : σ in A"
by (insert s, induct s σ rule: hastype_in_Term_induct,
auto simp: sorted_mapD[OF α] intro!: sort_matches simp: list_all2_conv_all_nth)
interpretation eval: sorted_map "λs. I⟦s⟧α" "𝒯(F,V)" A
by (auto intro!: sorted_mapI eval_hastype)
lemmas eval_sorted_map = eval.sorted_map_axioms
lemmas eval_dom = eval.in_dom
lemmas map_eval_hastype = eval.sorted_map_list
lemmas eval_has_same_type = eval.target_has_same_type
lemmas eval_dom_iff_hastype = eval.target_dom_iff_hastype
lemmas dom_iff_hastype = eval.source_dom_iff_hastype
end
lemmas eval_hastype_vars =
eval_hastype[OF _ hastype_in_Term_restrict_vars[THEN iffD2]]
lemmas eval_has_same_type_vars =
eval_has_same_type[OF _ hastype_in_Term_restrict_vars[THEN iffD2]]
end
lemma sorted_algebra_cong:
assumes "F = F'" and "A = A'"
and "⋀f σs τ as. f : σs → τ in F' ⟹ as :⇩l σs in A' ⟹ I f as = I' f as"
shows "sorted_algebra F A I = sorted_algebra F' A' I'"
using assms by (auto simp: sorted_algebra_def)
subsubsection ‹Term Algebras›
text ‹The sorted set of terms constitutes a sorted algebra, in which
evaluation is substitution.›
interpretation "term": sorted_algebra F "𝒯(F,V)" Fun for F V
apply (unfold_locales)
by (auto simp: Fun_hastype)
text ‹Sorted substitution preserves type:›
lemma subst_hastype: "θ :⇩s X → 𝒯(F,V) ⟹ s : σ in 𝒯(F,X) ⟹ s⋅θ : σ in 𝒯(F,V)"
using term.eval_hastype.
lemmas subst_hastype_imp_dom_iff = term.dom_iff_hastype
lemmas subst_hastype_vars = term.eval_hastype_vars
lemmas subst_has_same_type = term.eval_has_same_type
lemmas subst_same_vars = eval_same_vars[of _ _ _ Fun]
lemmas subst_map_vars = eval_map_vars[of Fun]
lemmas subst_o = eval_o[of Fun]
lemmas subst_sorted_map = term.eval_sorted_map
lemmas map_subst_hastype = term.map_eval_hastype
lemma subst_compose_sorted_map:
assumes "θ :⇩s X → 𝒯(F,Y)" and "ρ :⇩s Y → 𝒯(F,Z)"
shows "θ ∘⇩s ρ :⇩s X → 𝒯(F,Z)"
using assms by (simp add: sorted_map_def subst_compose subst_hastype)
lemma subst_hastype_iff_vars:
assumes "∀x∈vars s. ∀σ. θ x : σ in 𝒯(F,W) ⟷ x : σ in V"
shows "s ⋅ θ : σ in 𝒯(F,W) ⟷ s : σ in 𝒯(F,V)"
proof (insert assms, induct s arbitrary: σ)
case (Var x)
then show ?case by (auto intro!: hastypeI)
next
case (Fun f ss τ)
then show ?case by (simp add:Fun_hastype list_all2_conv_all_nth cong:map_cong)
qed
lemma subst_in_dom_imp_var_in_dom:
assumes "s⋅θ ∈ dom 𝒯(F,V)" and "x ∈ vars s" shows "θ x ∈ dom 𝒯(F,V)"
using assms
proof (induction s)
case (Var v)
then show ?case by auto
next
case (Fun f ss)
then obtain s where s: "s ∈ set ss" and "s⋅θ : dom 𝒯(F,V)" and xs: "x ∈ vars s"
by (auto dest!: Fun_in_dom_imp_arg_in_dom)
from Fun.IH[OF this]
show ?case.
qed
lemma subst_sorted_map_restrict_vars:
assumes θ: "θ :⇩s X → 𝒯(F,V)" and WV: "W ⊆⇩m V" and sθ: "s⋅θ ∈ dom 𝒯(F,W)"
shows "θ :⇩s X |` vars s → 𝒯(F,W)"
proof (safe intro!: sorted_mapI dest!: hastype_restrict[THEN iffD1])
fix x σ assume xs: "x ∈ vars s" and xσ: "x : σ in X"
from sorted_mapD[OF θ xσ] have xθσ: "θ x : σ in 𝒯(F,V)" by auto
from subst_in_dom_imp_var_in_dom[OF sθ xs]
obtain σ' where "θ x : σ' in 𝒯(F,W)" by (auto simp: in_dom_iff_ex_type)
with hastype_in_Term_mono[OF map_le_refl WV this] xθσ
show "θ x : σ in 𝒯(F,W)" by (auto simp: has_same_type)
qed
subsubsection ‹Homomorphisms›
locale sorted_distributive =
sort_preserving φ A + source: sorted_algebra F A I for F φ A I J +
assumes distrib: "f : σs → τ in F ⟹ as :⇩l σs in A ⟹ φ (I f as) = J f (map φ as)"
begin
lemma distrib_eval:
assumes α: "α :⇩s V → A" and s: "s : σ in 𝒯(F,V)"
shows "φ (I⟦s⟧α) = J⟦s⟧(φ ∘ α)"
proof (insert s, induct rule: hastype_in_Term_induct)
case (Var v σ)
then show ?case by auto
next
case (Fun f ss σs τ)
note ty = source.map_eval_hastype[OF α Fun(2)]
from Fun(3)[unfolded list_all2_indep2] distrib[OF Fun(1) ty]
show ?case by (auto simp: o_def cong:map_cong)
qed
text ‹The image of a distributive map forms a sorted algebra.›
sublocale image: sorted_algebra F "φ `⇧s A" J
proof (unfold_locales)
fix f σs τ bs
assume f: "f : σs → τ in F" and bs: "bs :⇩l σs in φ `⇧s A"
from bs[unfolded hastype_list_in_image]
obtain as where as: "as :⇩l σs in A" and asbs: "map φ as = bs" by auto
show "J f bs : τ in φ `⇧s A"
apply (rule hastype_in_imageI)
apply (fact source.sort_matches[OF f as])
by (auto simp: distrib[OF f as] asbs)
qed
end
lemma sorted_distributive_cong:
fixes A A' :: "'a ⇀ 's" and φ :: "'a ⇒ 'b" and I :: "'f ⇒ 'a list ⇒ 'a"
assumes φ: "⋀a σ. a : σ in A ⟹ φ a = φ' a"
and A: "A = A'"
and I: "⋀f σs τ as. f : σs → τ in F ⟹ as :⇩l σs in A ⟹ I f as = I' f as"
and J: "⋀f σs τ as. f : σs → τ in F ⟹ as :⇩l σs in A ⟹ J f (map φ as) = J' f (map φ as)"
shows "sorted_distributive F φ A I J = sorted_distributive F φ' A' I' J'"
proof-
{ fix A A' :: "'a ⇀ 's" and φ φ' :: "'a ⇒ 'b" and I I' :: "'f ⇒ 'a list ⇒ 'a" and J J' :: "'f ⇒ 'b list ⇒ 'b"
assume φ: "⋀a σ. a : σ in A ⟹ φ a = φ' a"
have map_eq: "as :⇩l σs in A ⟹ map φ as = map φ' as" for as σs
by (auto simp: list_eq_iff_nth_eq φ dest:list_all2_nthD)
{ assume A: "A = A'"
and I: "⋀f σs τ as. f : σs → τ in F ⟹ as :⇩l σs in A' ⟹ I f as = I' f as"
and J: "⋀f σs τ as. f : σs → τ in F ⟹ as :⇩l σs in A' ⟹ J f (map φ as) = J' f (map φ as)"
{ assume hom: "sorted_distributive F φ' A' I' J'"
from hom interpret sorted_distributive F φ' A' I' J'.
interpret I: sorted_algebra F A I
using source.sort_matches A I by (auto intro!: sorted_algebra.intro)
have "sorted_distributive F φ A I J"
proof (intro sorted_distributive.intro sorted_distributive_axioms.intro
I.sorted_algebra_axioms)
show "sort_preserving φ A" using sort_preserving_axioms[folded A] φ
by (simp cong: sort_preserving_cong)
fix f σs τ as
assume f: "f : σs → τ in F" and as: "as :⇩l σs in A"
from distrib[OF f as[unfolded A]] φ as I.sort_matches[OF f as]
I[OF f as[unfolded A]]
show "φ (I f as) = J f (map φ as)" by (auto simp: map_eq[symmetric] A intro!: J[OF f, symmetric])
qed
}
}
note this map_eq
}
note * = this(1) and map_eq = this(2)
from map_eq[unfolded atomize_imp atomize_all, folded atomize_imp] φ
have map_eq: "as :⇩l σs in A ⟹ map φ as = map φ' as" for as σs by metis
show ?thesis
proof (rule iffI)
assume pre: "sorted_distributive F φ A I J"
show "sorted_distributive F φ' A' I' J'"
apply (rule *[rotated -1, OF pre])
using assms by (auto simp: map_eq)
next
assume pre: "sorted_distributive F φ' A' I' J'"
show "sorted_distributive F φ A I J"
apply (rule *[rotated -1, OF pre])
using assms by auto
qed
qed
lemma sorted_distributive_o:
assumes "sorted_distributive F φ A I J" and "sorted_distributive F ψ (φ `⇧s A) J K"
shows "sorted_distributive F (ψ ∘ φ) A I K"
proof-
interpret φ: sorted_distributive F φ A I J + ψ: sorted_distributive F ψ "φ`⇧sA" J K using assms.
interpret sort_preserving "ψ∘φ" A by (rule sort_preserving_o; unfold_locales)
show ?thesis
apply (unfold_locales)
by (simp add: φ.distrib ψ.distrib[OF _ φ.to_image.sorted_map_list])
qed
locale sorted_homomorphism = sorted_distributive F φ A I J + sorted_map φ A B +
target: sorted_algebra F B J for F φ A I B J
begin
end
lemma sorted_homomorphism_o:
assumes "sorted_homomorphism F φ A I B J" and "sorted_homomorphism F ψ B J C K"
shows "sorted_homomorphism F (ψ ∘ φ) A I C K"
proof-
interpret φ: sorted_homomorphism F φ A I B J + ψ: sorted_homomorphism F ψ B J C K using assms.
interpret sorted_map "ψ ∘ φ" A C
using sorted_map_o[OF φ.sorted_map_axioms ψ.sorted_map_axioms].
show ?thesis
apply (unfold_locales)
by (simp add: φ.distrib ψ.distrib[OF _ φ.sorted_map_list])
qed
context sorted_algebra begin
context fixes α V assumes sorted: "α :⇩s V → A"
begin
text ‹ The term algebra is free in all @{term F}-algebras;
that is, every assignment @{term ‹α :⇩s V → A›} is extended to a homomorphism @{term ‹λs. I⟦s⟧α›}. ›
interpretation sorted_map α V A using sorted.
interpretation eval: sorted_map ‹λs. I⟦s⟧α› ‹𝒯(F,V)› A using eval_sorted_map[OF sorted].
interpretation eval: sorted_homomorphism F ‹λs. I⟦s⟧α› ‹𝒯(F,V)› Fun A I
apply (unfold_locales) by auto
lemmas eval_sorted_homomorphism = eval.sorted_homomorphism_axioms
end
end
lemma sorted_homomorphism_cong:
fixes A A' :: "'a ⇀ 's" and φ :: "'a ⇒ 'b" and I :: "'f ⇒ 'a list ⇒ 'a"
assumes φ: "⋀a σ. a : σ in A ⟹ φ a = φ' a"
and A: "A = A'"
and I: "⋀f σs τ as. f : σs → τ in F ⟹ as :⇩l σs in A ⟹ I f as = I' f as"
and B: "B = B'"
and J: "⋀f σs τ bs. f : σs → τ in F ⟹ bs :⇩l σs in B ⟹ J f bs = J' f bs"
shows "sorted_homomorphism F φ A I B J = sorted_homomorphism F φ' A' I' B' J'" (is "?l ⟷ ?r")
proof
assume ?l
then interpret sorted_homomorphism F φ A I B J.
have J': "as :⇩l σs in A' ⟹ J f (map φ as) = J' f (map φ as)" if f: "f : σs → τ in F" for f σs τ as
apply (rule J[OF f]) using A B sorted_map_list by auto
note * = sorted_distributive_cong[THEN iffD1, rotated -1, OF sorted_distributive_axioms]
show ?r
apply (intro sorted_homomorphism.intro *)
using assms J' sorted_map_axioms target.sorted_algebra_axioms
by (simp_all cong: sorted_map_cong sorted_algebra_cong)
next
assume ?r
then interpret sorted_homomorphism F φ' A' I' B' J'.
have J': "as :⇩l σs in A' ⟹ J f (map φ' as) = J' f (map φ' as)" if f: "f : σs → τ in F" for f σs τ as
apply (rule J[OF f]) using A B sorted_map_list φ by auto
note * = sorted_distributive_cong[THEN iffD1, rotated -1, OF sorted_distributive_axioms]
note 2 = sorted_map_cong[THEN iffD1, rotated -1, OF sorted_map_axioms]
show ?l
apply (intro sorted_homomorphism.intro * 2)
using assms J' target.sorted_algebra_axioms
by (simp_all cong: sorted_distributive_cong sorted_algebra_cong)
qed
context sort_preserving begin
lemma sort_preserving_map_vars: "sort_preserving (map_vars f) 𝒯(F,A)"
proof
fix a b σ τ
assume a: "a : σ in 𝒯(F,A)" and b: "b : τ in 𝒯(F,A)" and eq: "map_vars f a = map_vars f b"
from a b eq show "σ = τ"
proof (induct arbitrary: τ b)
case (Var x σ)
then show ?case by (cases b, auto simp: same_value_imp_same_type)
next
case IH: (Fun ff ss σs σ)
show ?case
proof (cases b)
case (Var y)
with IH show ?thesis by auto
next
case (Fun gg tt)
with IH have eq: "map (map_vars f) ss = map (map_vars f) tt" by (auto simp: id_def)
from arg_cong[OF this, of length] have lensstt: "length ss = length tt" by auto
with IH obtain τs where ff2: "ff : τs → τ in F" and tt: "tt :⇩l τs in 𝒯(F,A)"
by (auto simp: Fun Fun_hastype)
from IH have lenss: "length ss = length σs" by (auto simp: list_all2_lengthD)
have "σs = τs"
proof (unfold list_eq_iff_nth_eq, safe)
from lensstt tt IH show len2: "length σs = length τs" by (auto simp: list_all2_lengthD)
fix i assume "i < length σs"
with lenss have i: "i < length ss" by auto
show "σs ! i = τs ! i"
proof(rule list_all2_nthD[OF IH(3) i, rule_format])
from i lenss lensstt arg_cong[OF eq, of "λxs. xs!i"]
show "map_vars f (ss ! i) = map_vars f (tt ! i)" by auto
from i lensstt list_all2_nthD[OF tt]
show "tt ! i : τs ! i in 𝒯(F,A)" by auto
qed
qed
with ff2 Fun IH.hyps(1) show "σ = τ" by (auto simp: fun_hastype_def)
qed
qed
qed
lemma map_vars_image_Term: "map_vars f `⇧s 𝒯(F,A) = 𝒯(F,f `⇧s A)" (is "?L = ?R")
proof (intro sset_eqI)
interpret map_vars: sort_preserving "map_term (λx. x) f" "𝒯(F,A)" using sort_preserving_map_vars.
fix a σ
show "a : σ in ?L ⟷ a : σ in ?R"
proof (induct a arbitrary: σ)
case (Var x)
then show ?case
by (auto simp: map_vars.hastype_in_image map_term_eq_Var hastype_in_image)
(metis Var_hastype)
next
case IH: (Fun ff as)
show ?case
proof (unfold Fun_hastype map_vars.hastype_in_image map_term_eq_Fun, safe dest!: Fun_hastype[THEN iffD1])
fix ss σs
assume as: "as = map (map_vars f) ss" and ff: "ff : σs → σ in F" and ss: "ss :⇩l σs in 𝒯(F,A)"
from ss have "map (map_vars f) ss :⇩l σs in map_vars f `⇧s 𝒯(F,A)"
by (auto simp: map_vars.hastype_list_in_image)
with IH[unfolded as]
have "map (map_vars f) ss :⇩l σs in 𝒯(F,f `⇧s A)"
by (auto simp: list_all2_conv_all_nth)
with ff
show "∃σs. ff : σs → σ in F ∧ map (map_vars f) ss :⇩l σs in 𝒯(F,f `⇧s A)" by auto
next
fix σs assume ff: "ff : σs → σ in F" and as: "as :⇩l σs in 𝒯(F,f `⇧s A)"
with IH have "as :⇩l σs in map_vars f `⇧s 𝒯(F,A)"
by (auto simp: map_vars.hastype_in_image list_all2_conv_all_nth)
then obtain ss where ss: "ss :⇩l σs in 𝒯(F,A)" and as: "as = map (map_vars f) ss"
by (auto simp: map_vars.hastype_list_in_image)
from ss ff have a: "Fun ff ss : σ in 𝒯(F,A)" by (auto simp: Fun_hastype)
show "∃a. a : σ in 𝒯(F,A) ∧ (∃fa ss. a = Fun fa ss ∧ ff = fa ∧ as = map (map_vars f) ss)"
apply (rule exI[of _ "Fun ff ss"])
using a as by auto
qed
qed
qed
end
context sorted_map begin
lemma sorted_map_map_vars: "map_vars f :⇩s 𝒯(F,A) → 𝒯(F,B)"
proof-
interpret map_vars: sort_preserving ‹map_vars f› ‹𝒯(F,A)› using sort_preserving_map_vars.
show ?thesis
apply (unfold map_vars.sorted_map_iff_image_subset)
apply (unfold map_vars_image_Term)
apply (rule Term_mono_right)
using image_subsset.
qed
end
subsection ‹Lifting Sorts›
text ‹By `uni-sorted' we mean the situation where there is only one sort @{term "()"}.
This situation is isomorphic to sets.›
definition "unisorted A a ≡ if a ∈ A then Some () else None"
lemma unisorted_eq_Some[simp]: "unisorted A a = Some σ ⟷ a ∈ A"
and unisorted_eq_None[simp]: "unisorted A a = None ⟷ a ∉ A"
and hastype_in_unisorted[simp]: "a : σ in unisorted A ⟷ a ∈ A"
by (auto simp: unisorted_def hastype_def)
lemma hastype_list_in_unisorted[simp]: "as :⇩l σs in unisorted A ⟷ length as = length σs ∧ set as ⊆ A"
by (auto simp: list_all2_conv_all_nth dest: all_nth_imp_all_set)
lemma dom_unisorted[simp]: "dom (unisorted A) = A"
by (auto simp: unisorted_def domIff split:if_split_asm)
lemma unisorted_map[simp]:
"f :⇩s unisorted A → τ ⟷ f : A → dom τ"
"f :⇩s σ → unisorted B ⟷ f : dom σ → B"
by (auto simp: sorted_map_def hastype_def domIff)
lemma image_unisorted[simp]: "f `⇧s unisorted A = unisorted (f ` A)"
by (auto intro!:sset_eqI simp: hastype_def sorted_image_def safe_The_eq_Some)
definition unisorted_sig :: "('f×nat) set ⇒ ('f,unit) ssig"
where "unisorted_sig F ≡ λ(f,σs). if (f, length σs) ∈ F then Some () else None"
lemma in_unisorted_sig[simp]: "f : σs → τ in unisorted_sig F ⟷ (f,length σs) ∈ F"
by (auto simp: unisorted_sig_def fun_hastype_def)
inductive_set uTerm (‹𝔗'(_,_')› [1,1]1000) for F V where
"Var v ∈ 𝔗(F,V)" if "v ∈ V"
| "∀s ∈ set ss. s ∈ 𝔗(F,V) ⟹ Fun f ss ∈ 𝔗(F,V)" if "(f,length ss) ∈ F"
lemma Var_in_Term[simp]: "Var x ∈ 𝔗(F,V) ⟷ x ∈ V"
using uTerm.cases by (auto intro: uTerm.intros)
lemma Fun_in_Term[simp]: "Fun f ss ∈ 𝔗(F,V) ⟷ (f,length ss) ∈ F ∧ set ss ⊆ 𝔗(F,V)"
apply (unfold subset_iff)
apply (fold Ball_def)
by (metis (no_types, lifting) term.distinct(1) term.inject(2) uTerm.simps)
lemma hastype_in_unisorted_Term[simp]:
"s : σ in 𝒯(unisorted_sig F, unisorted V) ⟷ s ∈ 𝔗(F,V)"
proof (induct s)
case (Var x)
then show ?case by auto
next
case (Fun f ss)
then show ?case
by (auto simp: in_dom_iff_ex_type Fun_hastype list_all2_indep2
intro!: exI[of _ "replicate (length ss) ()"])
qed
lemma unisorted_Term: "𝒯(unisorted_sig F, unisorted V) = unisorted 𝔗(F,V)"
by (auto intro!: sset_eqI)
locale algebra =
fixes F :: "('f × nat) set" and A :: "'a set" and I
assumes closed: "(f, length as) ∈ F ⟹ set as ⊆ A ⟹ I f as ∈ A"
begin
end
lemma unisorted_algebra: "sorted_algebra (unisorted_sig F) (unisorted A) I ⟷ algebra F A I"
(is "?l ⟷ ?r")
proof
assume "?r"
then interpret algebra.
show ?l
apply unfold_locales by (auto simp: list_all2_indep2 intro!: closed)
next
assume ?l
then interpret sorted_algebra ‹unisorted_sig F› ‹unisorted A› I.
show ?r
proof unfold_locales
fix f as assume f: "(f, length as) ∈ F" and asA: "set as ⊆ A"
from f have "f : replicate (length as) () → () in unisorted_sig F" by auto
from sort_matches[OF this] asA
show "I f as ∈ A" by auto
qed
qed
context algebra begin
interpretation unisorted: sorted_algebra ‹unisorted_sig F› ‹unisorted A› I
apply (unfold unisorted_algebra)..
lemma eval_closed: "α : V → A ⟹ s ∈ 𝔗(F,V) ⟹ I⟦s⟧α ∈ A"
using unisorted.eval_hastype[of α "unisorted V"] by simp
end
locale distributive =
source: algebra F A I for F φ A I J +
assumes distrib: "(f, length as) ∈ F ⟹ set as ⊆ A ⟹ φ (I f as) = J f (map φ as)"
lemma unisorted_distributive:
"sorted_distributive (unisorted_sig F) φ (unisorted A) I J ⟷
distributive F φ A I J" (is "?l ⟷ ?r")
proof
assume ?r
then interpret distributive.
show ?l
apply (intro sorted_distributive.intro unisorted_algebra[THEN iffD2])
apply (unfold_locales)
by (auto intro!: distrib simp: list_all2_same_right)
next
assume ?l
then interpret sorted_distributive ‹unisorted_sig F› φ ‹unisorted A› I J.
from source.sorted_algebra_axioms
interpret source: algebra F A I by (unfold unisorted_algebra)
show ?r
proof unfold_locales
fix f as
show "(f, length as) ∈ F ⟹ set as ⊆ A ⟹ φ (I f as) = J f (map φ as)"
using distrib[of f "replicate (length as) ()" _ as]
by auto
qed
qed
locale homomorphism =
distributive F φ A I J + target: algebra F B J for F φ A I B J +
assumes funcset: "φ : A → B"
lemma unisorted_homomorphism:
"sorted_homomorphism (unisorted_sig F) φ (unisorted A) I (unisorted B) J ⟷
homomorphism F φ A I B J" (is "?l ⟷ ?r")
by (auto simp: sorted_homomorphism_def unisorted_distributive unisorted_algebra
homomorphism_def homomorphism_axioms_def)
lemma homomorphism_cong:
assumes φ: "⋀a. a ∈ A ⟹ φ a = φ' a"
and A: "A = A'"
and I: "⋀f as. (f, length as) ∈ F ⟹ I f as = I' f as"
and B: "B = B'"
and J: "⋀f bs. (f, length bs) ∈ F ⟹ J f bs = J' f bs"
shows "homomorphism F φ A I B J = homomorphism F φ' A' I' B' J'"
proof-
note sorted_homomorphism_cong
[where F = "unisorted_sig F" and A = "unisorted A" and A' = "unisorted A'" and B = "unisorted B" and B' = "unisorted B'"]
note * = this[unfolded unisorted_homomorphism]
show ?thesis apply (rule *)
by (auto simp: A B φ I J list_all2_same_right)
qed
context algebra begin
interpretation unisorted: sorted_algebra ‹unisorted_sig F› ‹unisorted A› I
apply (unfold unisorted_algebra)..
lemma eval_homomorphism: "α : V → A ⟹ homomorphism F (λs. I⟦s⟧α) 𝔗(F,V) Fun A I"
apply (fold unisorted_homomorphism)
apply (fold unisorted_Term)
apply (rule unisorted.eval_sorted_homomorphism)
by auto
end
context homomorphism begin
interpretation unisorted: sorted_homomorphism ‹unisorted_sig F› φ ‹unisorted A› I ‹unisorted B› J
apply (unfold unisorted_homomorphism)..
lemma distrib_eval: "α : V → A ⟹ s ∈ 𝔗(F,V) ⟹ φ (I⟦s⟧α) = J⟦s⟧(φ ∘ α)"
using unisorted.distrib_eval[of _ "unisorted V"] by simp
end
text ‹By `unsorted' we mean the situation where any element has the unique type @{term "()"}.›
lemma Term_UNIV[simp]: "𝔗(UNIV,UNIV) = UNIV"
proof-
have "s ∈ 𝔗(UNIV,UNIV)" for s by (induct s, auto)
then show ?thesis by auto
qed
text ‹When the carrier is unsorted, any interpretation forms an algebra.›
interpretation unsorted: algebra UNIV UNIV I
rewrites "⋀a. a ∈ UNIV ⟷ True"
and "⋀P0. (True ⟹ P0) ≡ Trueprop P0"
and "⋀P0. (True ⟹ PROP P0) ≡ PROP P0"
and "⋀P0 P1. (True ⟹ PROP P1 ⟹ P0) ≡ (PROP P1 ⟹ P0)"
for F I
apply unfold_locales by auto
interpretation unsorted.eval: homomorphism UNIV "λs. I⟦s⟧α" UNIV Fun UNIV I
rewrites "⋀a. a ∈ UNIV ⟷ True"
and "⋀X. X ⊆ UNIV ⟷ True"
and "⋀P0. (True ⟹ P0) ≡ Trueprop P0"
and "⋀P0. (True ⟹ PROP P0) ≡ PROP P0"
and "⋀P0 P1. (True ⟹ PROP P1 ⟹ P0) ≡ (PROP P1 ⟹ P0)"
for I
using unsorted.eval_homomorphism[of _ UNIV] by auto
text ‹Evaluation distributes over evaluations in the term algebra, i.e., substitutions.›
lemma subst_eval: "I⟦s⋅θ⟧α = I⟦s⟧(λx. I⟦θ x⟧α)"
using unsorted.eval.distrib_eval[of _ UNIV, unfolded o_def]
by auto
lemmas subst_subst = subst_eval[of Fun]
subsubsection ‹Collecting Variables via Evaluation›
definition "var_list_term t ≡ (λf. concat)⟦t⟧(λv. [v])"
lemma var_list_Fun[simp]: "var_list_term (Fun f ss) = concat (map var_list_term ss)"
and var_list_Var[simp]: "var_list_term (Var x) = [x]"
by (simp_all add: var_list_term_def[abs_def])
lemma set_var_list[simp]: "set (var_list_term s) = vars s"
by (induct s, auto simp: var_list_term_def)
lemma eval_subset_Un_vars:
assumes "∀f as. foo (I f as) ⊆ ⋃(foo ` set as)"
shows "foo (I⟦s⟧α) ⊆ (⋃x∈vars_term s. foo (α x))"
proof (induct s)
case (Var x)
show ?case by simp
next
case (Fun f ss)
have "foo (I⟦Fun f ss⟧α) = foo (I f (map (λs. I⟦s⟧α) ss))" by simp
also note assms[rule_format]
also have "⋃ (foo ` set (map (λs. I⟦s⟧α) ss)) = (⋃s∈set ss. foo (I⟦s⟧α))" by simp
also have "… ⊆ (⋃s ∈ set ss. (⋃ x ∈ vars_term s. foo (α x)))"
apply (rule UN_mono)
using Fun by auto
finally show ?case by simp
qed
subsubsection ‹Ground terms›
lemma hastype_in_Term_empty_imp_vars: "s : σ in 𝒯(F,∅) ⟹ vars s = {}"
by (auto dest: hastype_in_Term_imp_vars_subset)
lemma hastype_in_Term_empty_imp_vars_subst: "s : σ in 𝒯(F,∅) ⟹ vars (s⋅θ) = {}"
by (auto simp: vars_term_subst_apply_term hastype_in_Term_empty_imp_vars)
lemma ground_Term_iff: "s : σ in 𝒯(F,V) ∧ ground s ⟷ s : σ in 𝒯(F,∅)"
using hastype_in_Term_restrict_vars[of s σ F V]
by (auto simp: hastype_in_Term_empty_imp_vars ground_vars_term_empty)
lemma hastype_in_Term_empty_imp_subst:
"s : σ in 𝒯(F,∅) ⟹ s⋅θ : σ in 𝒯(F,V)"
by (rule subst_hastype, auto)
locale subsignature = fixes F G :: "('f,'s) ssig" assumes subssig: "F ⊆⇩m G"
begin
lemmas Term_subsset = Term_mono_left[OF subssig]
lemmas hastype_in_Term_sub = Term_subsset[THEN subssetD]
lemma subsignature: "f : σs → τ in F ⟹ f : σs → τ in G"
using subssig by (auto dest: subssigD)
end
locale subsignature_algebra = subsignature + super: sorted_algebra G
begin
sublocale sorted_algebra F A I
apply unfold_locales
using super.sort_matches[OF subssigD[OF subssig]] by auto
end
locale subalgebra = sorted_algebra F A I + super: sorted_algebra G B J +
subsignature F G
for F :: "('f,'s) ssig" and A :: "'a ⇀ 's" and I
and G :: "('f,'s) ssig" and B :: "'a ⇀ 's" and J +
assumes subcar: "A ⊆⇩m B"
assumes subintp: "f : σs → τ in F ⟹ as :⇩l σs in A ⟹ I f as = J f as"
begin
lemma subcarrier: "a : σ in A ⟹ a : σ in B"
using subcar by (auto dest: subssetD)
lemma subeval:
assumes s: "s : σ in 𝒯(F,V)" and α: "α :⇩s V → A" shows "J⟦s⟧α = I⟦s⟧α"
proof (insert s, induct rule: hastype_in_Term_induct)
case (Var v σ)
then show ?case by auto
next
case (Fun f ss σs τ)
then show ?case
by (auto simp: list_all2_indep2 cong:map_cong intro!:subintp[symmetric] map_eval_hastype α)
qed
end
lemma term_subalgebra:
assumes FG: "F ⊆⇩m G" and VW: "V ⊆⇩m W"
shows "subalgebra F 𝒯(F,V) Fun G 𝒯(G,W) Fun"
apply unfold_locales
using FG VW Term_mono[OF FG VW] by auto
text ‹ An algebra where every element has a representation: ›
locale sorted_algebra_constant = sorted_algebra_syntax +
fixes const
assumes vars_const[simp]: "⋀d. vars (const d) = {}"
assumes eval_const[simp]: "⋀d α. I⟦const d⟧α = d"
begin
lemma eval_subst_const[simp]: "I⟦e⋅(const∘α)⟧β = I⟦e⟧α"
by (induct e, auto simp:o_def intro!:arg_cong[of _ _ "I _"])
lemma eval_upd_as_subst: "I⟦e⟧α(x:=a) = I⟦e ⋅ Var(x:=const a)⟧α"
by (induct e, auto simp: o_def intro: arg_cong[of _ _ "I _"])
end
context sorted_algebra_syntax begin
definition "constant_at f σs i ≡
∀as b. as :⇩l σs in A ⟶ A b = A (as!i) ⟶ I f (as[i:=b]) = I f as"
lemma constant_atI[intro]:
assumes "⋀as b. as :⇩l σs in A ⟹ A b = A (as!i) ⟹ I f (as[i:=b]) = I f as"
shows "constant_at f σs i" using assms by (auto simp: constant_at_def)
lemma constant_atD:
"constant_at f σs i ⟹ as :⇩l σs in A ⟹ A b = A (as!i) ⟹ I f (as[i:=b]) = I f as"
by (auto simp: constant_at_def)
lemma constant_atE[elim]:
assumes "constant_at f σs i"
and "(⋀as b. as :⇩l σs in A ⟹ A b = A (as!i) ⟹ I f (as[i:=b]) = I f as) ⟹ thesis"
shows thesis using assms by (auto simp: constant_at_def)
definition "constant_term_on s x ≡ ∀α a. I⟦s⟧α(x:=a) = I⟦s⟧α"
lemma constant_term_onI:
assumes "⋀α a. I⟦s⟧α(x:=a) = I⟦s⟧α" shows "constant_term_on s x"
using assms by (auto simp: constant_term_on_def)
lemma constant_term_onD:
assumes "constant_term_on s x" shows "I⟦s⟧α(x:=a) = I⟦s⟧α"
using assms by (auto simp: constant_term_on_def)
lemma constant_term_onE:
assumes "constant_term_on s x" and "(⋀α a. I⟦s⟧α(x:=a) = I⟦s⟧α) ⟹ thesis"
shows thesis using assms by (auto simp: constant_term_on_def)
lemma : "x ∉ vars s ⟹ constant_term_on s x"
by (auto intro!: constant_term_onI simp: eval_with_fresh_var)
lemma constant_term_on_eq:
assumes st: "I⟦s⟧ = I⟦t⟧" and s: "constant_term_on s x" shows "constant_term_on t x"
using s fun_cong[OF st] by (auto simp: constant_term_on_def)
definition "constant_term s ≡ ∀x. constant_term_on s x"
lemma constant_termI: assumes "⋀x. constant_term_on s x" shows "constant_term s"
using assms by (auto simp: constant_term_def)
lemma ground_imp_constant: "vars s = {} ⟹ constant_term s"
by (auto intro!: constant_termI constant_term_on_extra_var)
end
end