Theory T_G_Prelim
theory T_G_Prelim
imports Mcalc
begin
locale ProblemIkTpart =
Ik? : ProblemIk wtFsym wtPsym arOf resOf parOf Φ infTp
for wtFsym :: "'fsym ⇒ bool"
and wtPsym :: "'psym ⇒ bool"
and arOf :: "'fsym ⇒ 'tp list"
and resOf and parOf and Φ and infTp +
fixes
prot :: "'tp ⇒ bool"
and protFw :: "'tp ⇒ bool"
assumes
tp_disj: "⋀ σ. ¬ prot σ ∨ ¬ protFw σ"
and tp_mcalc: "⋀ σ. prot σ ∨ protFw σ ∨ (∀ c ∈ Φ. σ ⊢ c)"
begin
definition isRes where "isRes σ ≡ ∃ f. wtFsym f ∧ resOf f = σ"
definition "unprot σ ≡ ¬ prot σ ∧ ¬ protFw σ"
lemma unprot_mcalc[simp]: "⟦unprot σ; c ∈ Φ⟧ ⟹ σ ⊢ c "
using tp_mcalc unfolding unprot_def by auto
end
locale ModelIkTpart =
Ik? : ProblemIkTpart wtFsym wtPsym arOf resOf parOf Φ infTp prot protFw +
Ik? : Model wtFsym wtPsym arOf resOf parOf Φ intT intF intP
for wtFsym :: "'fsym ⇒ bool"
and wtPsym :: "'psym ⇒ bool"
and arOf :: "'fsym ⇒ 'tp list"
and resOf and parOf and Φ and infTp and prot and protFw
and intT and intF and intP
end