Theory Preliminaries
section‹Preliminaries›
theory Preliminaries
imports "HOL-Cardinals.Cardinals"
"HOL-Library.Countable_Set_Type"
begin
subsection ‹Miscelanea›
text‹A fixed countable universe for interpreting countable models:›
datatype univ = UU nat
lemma infinite_univ[simp]: "infinite (UNIV :: univ set)"
unfolding infinite_iff_card_of_nat card_of_ordLeq[symmetric]
unfolding inj_on_def by auto
lemma countable_univ[simp]: "countable (UNIV :: univ set)"
unfolding countable_card_of_nat apply(rule surj_imp_ordLeq[of _ UU])
by (metis subset_UNIV surj_def univ.exhaust)
text‹Picking an element from a nonempty set (Hilbert choice for sets):›
definition "pick X ≡ SOME x. x ∈ X"
lemma pick[simp]: "x ∈ X ⟹ pick X ∈ X"
unfolding pick_def by (metis someI_ex)
lemma pick_NE[simp]: "X ≠ {} ⟹ pick X ∈ X" by auto
definition sappend (infix ‹@@› 60) where
"Al @@ Bl = {al @ bl | al bl. al ∈ Al ∧ bl ∈ Bl}"
lemma sappend_NE[simp]: "A @@ B ≠ {} ⟷ A ≠ {} ∧ B ≠ {}"
unfolding sappend_def by auto
abbreviation fst3 :: "'a * 'b * 'c ⇒ 'a" where "fst3 abc ≡ fst abc"
abbreviation "snd3 abc ≡ fst (snd abc)"
abbreviation "trd3 abc ≡ snd (snd abc)"
hide_const int
abbreviation "any ≡ undefined"
text‹Non-emptyness of predicates:›
abbreviation (input) "NE φ ≡ ∃ a. φ a"
lemma NE_NE: "NE NE"
apply(rule exI[of _ "λ a. True"]) by auto
lemma length_Suc_0:
"length al = Suc 0 ⟷ (∃ a. al = [a])"
by (metis (lifting) length_0_conv length_Suc_conv)
subsection‹List combinators›
lemmas list_all2_length = list_all2_conv_all_nth
lemmas list_eq_iff = list_eq_iff_nth_eq
lemmas list_all_iff
lemmas list_all_length
definition "singl a = [a]"
lemma length_singl[simp]: "length (singl a) = Suc 0"
unfolding singl_def by simp
lemma hd_singl[simp]: "hd (singl a) = a"
unfolding singl_def by simp
lemma hd_o_singl[simp]: "hd o singl = id"
unfolding comp_def fun_eq_iff by simp
lemma singl_hd[simp]: "length al = Suc 0 ⟹ singl (hd al) = al"
unfolding singl_def by (cases al, auto)
lemma singl_inj[simp]: "singl a = singl b ⟷ a = b"
unfolding singl_def by simp
definition "list A ≡ SOME al. distinct al ∧ set al = A"
lemma distinct_set_list:
"finite A ⟹ distinct (list A) ∧ set (list A) = A"
unfolding list_def apply(rule someI_ex) using finite_distinct_list by auto
lemmas distinct_list[simp] = distinct_set_list[THEN conjunct1]
lemmas set_list[simp] = distinct_set_list[THEN conjunct2]
lemma set_list_set[simp]: "set (list (set xl)) = set xl" by auto
lemma length_list[simp]: "finite A ⟹ length (list A) = card A"
by (metis distinct_card distinct_set_list)
lemma list_all_mp[elim]:
assumes "list_all (λ a. φ a ⟶ ψ a) al" and "list_all φ al"
shows "list_all ψ al"
using assms unfolding list_all_iff by auto
lemma list_all_map:
"list_all φ (map f al) = list_all (φ o f) al"
by (metis (no_types) length_map list_all_length nth_map o_def)
lemma list_Emp[simp]: "list {} = []"
by (metis set_empty2 set_list_set)
lemma distinct_set_eq_Singl[simp]: "distinct al ⟹ set al = {a} ⟷ al = [a]"
apply(cases al, simp)
by (metis (lifting) List.set_simps distinct.simps
distinct_singleton empty_not_insert insert_eq_iff set_empty2)
lemma list_Singl[simp]: "list {b} = [b]"
unfolding list_def apply(rule some_equality) by auto
lemma list_insert:
assumes A: "finite A" and b: "b ∉ A"
shows
"∃ al1 al2.
A = set (al1 @ al2) ∧ distinct (al1 @ [b] @ al2) ∧
list (insert b A) = al1 @ [b] @ al2"
proof-
have "b ∈ set (list (insert b A))" using A by auto
then obtain al1 al2 where 0: "list (insert b A) = al1 @ [b] @ al2"
by (metis append_Cons eq_Nil_appendI split_list_last)
hence 1: "distinct (al1 @ [b] @ al2)" using A
by (metis distinct_set_list finite_insert)
hence "b ∉ set (al1 @ al2)" by simp
moreover have "insert b A = insert b (set (al1 @ al2))"
using 0 set_list[OF finite.insertI[OF A, of b]] by auto
ultimately have "A = set (al1 @ al2)" using b by auto
thus ?thesis using 0 1 by auto
qed
lemma list_all_list[simp]:
assumes "finite A" shows "list_all φ (list A) ⟷ (∀ a ∈ A. φ a)"
using assms unfolding list_all_iff by simp
lemma list_ex_list[simp]:
"finite A ⟹ list_ex φ (list A) = (∃a∈A. φ a)"
unfolding list_ex_iff by simp
text‹list update:›
fun lupd where
"lupd Nil Nil F = F"
|
"lupd (a # al) (b # bl) F = lupd al bl (F(a := b))"
|
"lupd _ _ F = any"
lemma set_lupd:
assumes "a ∈ set al ∨ F1 a = F2 a"
shows "lupd al bl F1 a = lupd al bl F2 a"
using assms apply(induct arbitrary: F1 F2 rule: list_induct2') by auto
lemma lupd_map:
assumes "length al = length bl" and "a1 ∈ set al ∨ G a1 = F (H a1)"
shows "lupd al (map F bl) G a1 = F (lupd al bl H a1)"
using assms apply (induct arbitrary: F G H rule: list_induct2) by auto
lemma nth_map2[simp]:
assumes "length bl = length al" and "i < length al"
shows "(map2 f al bl) ! i = f (al!i) (bl!i)"
using assms by auto
lemma list_all2_Nil_iff:
assumes "list_all2 R xs ys"
shows "xs = [] ⟷ ys = []"
using assms by (cases xs, cases ys) auto
lemma list_all2_NilL[simp]:
"list_all2 R [] ys ⟷ ys = []"
using list_all2_Nil_iff by auto
lemma list_all2_NilR[simp]:
"list_all2 R xs [] ⟷ xs = []"
using list_all2_Nil_iff by auto
lemma list_all2_ConsL:
assumes "list_all2 R (x # xs') ys"
shows "∃ y ys'. ys = y # ys' ∧ R x y ∧ list_all2 R xs' ys'"
using assms by(cases ys) auto
lemma list_all2_elimL[elim, consumes 2, case_names Cons]:
assumes xs: "xs = x # xs'" and h: "list_all2 R xs ys"
and Cons: "⋀ y ys'. ⟦ys = y # ys'; R x y; list_all2 R xs' ys'⟧ ⟹ phi"
shows phi
using list_all2_ConsL assms by metis
lemma list_all2_elimL2[elim, consumes 1, case_names Cons]:
assumes h: "list_all2 R (x # xs') ys"
and Cons: "⋀ y ys'. ⟦ys = y # ys'; R x y; list_all2 R xs' ys'⟧ ⟹ phi"
shows phi
using list_all2_ConsL assms by metis
lemma list_all2_ConsR:
assumes "list_all2 R xs (y # ys')"
shows "∃ x xs'. xs = x # xs' ∧ R x y ∧ list_all2 R xs' ys'"
using assms by(cases xs) auto
lemma list_all2_elimR[elim, consumes 2, case_names Cons]:
assumes ys: "ys = y # ys'" and h: "list_all2 R xs ys"
and Cons: "⋀ x xs'. ⟦xs = x # xs'; R x y; list_all2 R xs' ys'⟧ ⟹ phi"
shows phi
using list_all2_ConsR assms by metis
lemma list_all2_elimR2[elim, consumes 1, case_names Cons]:
assumes h: "list_all2 R xs (y # ys')"
and Cons: "⋀ x xs'. ⟦xs = x # xs'; R x y; list_all2 R xs' ys'⟧ ⟹ phi"
shows phi
using list_all2_ConsR assms by metis
lemma ex_list_all2:
assumes "⋀x. x ∈ set xs ⟹ ∃y. f x y"
shows "∃ ys. list_all2 f xs ys"
using assms apply(induct xs)
apply fastforce
by (metis set_simps insertCI list_all2_Cons)
lemma list_all2_cong[fundef_cong]:
assumes "xs1 = ys1" and "xs2 = ys2"
and "⋀ i . i < length xs2 ⟹ R (xs1!i) (xs2!i) ⟷ R' (ys1!i) (ys2!i)"
shows "list_all2 R xs1 xs2 ⟷ list_all2 R' ys1 ys2"
by (metis assms list_all2_length)
lemma list_all2_o: "list_all2 (P o f) al bl = list_all2 P (map f al) bl"
unfolding list_all2_map1 comp_def ..
lemma set_size_list:
assumes "x ∈ set xs"
shows "f x ≤ size_list f xs"
by (metis assms size_list_estimation' order_eq_refl)
lemma nth_size_list:
assumes "i < length xs"
shows "f (xs!i) ≤ size_list f xs"
by (metis assms nth_mem set_size_list)
lemma list_all2_list_all[simp]:
"list_all2 (λ x. f) xs ys ⟷
length xs = length ys ∧ list_all f ys"
by (metis list_all2_length list_all_length)
lemma list_all2_list_allR[simp]:
"list_all2 (λ x y. f x) xs ys ⟷
length xs = length ys ∧ list_all f xs"
by (metis (lifting) list_all2_length list_all_length)
lemma list_all2_list_all_2[simp]:
"list_all2 f xs xs ⟷ list_all (λ x. f x x) xs"
by (auto simp add: list_all2_iff list_all_iff zip_same)
lemma list_all2_map_map:
"list_all2 φ (map f Tl) (map g Tl) =
list_all (λT. φ (f T) (g T)) Tl"
unfolding list_all2_map1 list_all2_map2 list_all2_list_all_2 ..
lemma length_map2[simp]:
assumes "length ys = length xs"
shows "length (map2 f xs ys) = length xs"
using assms by auto
lemma listAll2_map2I[intro?]:
assumes "length xs = length ys"
and "⋀ i. i < length xs ⟹ R (xs!i) (f (xs!i) (ys!i))"
shows "list_all2 R xs (map2 f xs ys)"
apply(rule list_all2I) using assms unfolding set_zip by auto
lemma set_incl_pred:
"A ≤ B ⟷ (∀ a. A a ⟶ B a)"
by (metis predicate1D predicate1I)
lemma set_incl_pred2:
"A ≤ B ⟷ (∀ a1 a2. A a1 a2 ⟶ B a1 a2)"
by (metis predicate2I rev_predicate2D)
lemma set_incl_pred3:
"A ≤ B ⟷ (∀ a1 a2 a3. A a1 a2 a3 ⟶ B a1 a2 a3)" (is "_ ⟷ ?R")
proof-
have "A ≤ B ⟷ (∀ a1. A a1 ≤ B a1)" by (metis le_funD le_funI)
also have "... ⟷ ?R" apply(rule iff_allI)
unfolding set_incl_pred2 ..
finally show ?thesis .
qed
lemma set_incl_pred4:
"A ≤ B ⟷ (∀ a1 a2 a3 a4. A a1 a2 a3 a4 ⟶ B a1 a2 a3 a4)" (is "_ ⟷ ?R")
proof-
have "A ≤ B ⟷ (∀ a1. A a1 ≤ B a1)" by (metis le_funD le_funI)
also have "... ⟷ ?R" apply(rule iff_allI)
unfolding set_incl_pred3 ..
finally show ?thesis .
qed
lemma list_all_mono:
assumes "phi ≤ chi"
shows "list_all phi ≤ list_all chi"
using assms unfolding set_incl_pred list_all_iff by auto
lemma list_all2_mono:
assumes "phi ≤ chi"
shows "list_all2 phi ≤ list_all2 chi"
using assms by (metis (full_types) list_all2_mono set_incl_pred2)
subsection‹Variables›
text‹The type of variables:›
datatype var = Variable nat
lemma card_of_var: "|UNIV::var set| =o natLeq"
proof-
have "|UNIV::var set| =o |UNIV::nat set|"
apply(rule ordIso_symmetric,rule card_of_ordIsoI)
unfolding bij_betw_def inj_on_def surj_def using var.exhaust by auto
also have "|UNIV::nat set| =o natLeq" by(rule card_of_nat)
finally show ?thesis .
qed
lemma infinite_var[simp]: "infinite (UNIV :: var set)"
using card_of_var by (rule ordIso_natLeq_infinite1)
lemma countable_var: "countable (UNIV :: var set)"
proof-
have 0: "(UNIV :: var set) ≠ {}" by simp
show ?thesis unfolding countable_card_of_nat unfolding card_of_ordLeq2[symmetric, OF 0]
apply(rule exI[of _ Variable]) unfolding image_def apply auto by (case_tac x, auto)
qed
lemma countable_infinite:
assumes A: "countable A" and B: "infinite B"
shows "|A| ≤o |B|"
proof-
have "|A| ≤o natLeq" using A unfolding countable_card_le_natLeq .
also have "natLeq ≤o |B|" by (metis B infinite_iff_natLeq_ordLeq)
finally show ?thesis .
qed
definition "part12_pred V V1_V2 ≡
V = fst V1_V2 ∪ snd V1_V2 ∧ fst V1_V2 ∩ snd V1_V2 = {} ∧
infinite (fst V1_V2) ∧ infinite (snd V1_V2)"
definition "part12 V ≡ SOME V1_V2. part12_pred V V1_V2"
definition "part1 = fst o part12" definition "part2 = snd o part12"
lemma part12_pred:
assumes "infinite (V::'a set)" shows "∃ V1_V2. part12_pred V V1_V2"
proof-
obtain f :: "nat ⇒ 'a" where f: "inj f" and r: "range f ⊆ V"
using assms by (metis infinite_iff_countable_subset)
let ?u = "λ k::nat. 2 * k" let ?v = "λ k::nat. Suc (2 * k)"
let ?A = "?u ` UNIV" let ?B = "?v ` UNIV"
have 0: "inj ?u ∧ inj ?v" unfolding inj_on_def by auto
hence 1: "infinite ?A ∧ infinite ?B" using finite_imageD by auto
let ?V1 = "f ` ?A" let ?V2 = "V - ?V1"
have "V = ?V1 ∪ ?V2 ∧ ?V1 ∩ ?V2 = {}" using r by blast
moreover have "infinite ?V1" using 1 f
by (metis finite_imageD subset_inj_on top_greatest)
moreover
{have "infinite (f ` ?B)" using 1 f
by (metis finite_imageD subset_inj_on top_greatest)
moreover have "f ` ?B ⊆ ?V2" using r f by (auto simp: inj_eq) arith
ultimately have "infinite ?V2" by (metis infinite_super)
}
ultimately show ?thesis unfolding part12_pred_def
by (intro exI[of _ "(?V1,?V2)"]) auto
qed
lemma part12: assumes "infinite V" shows "part12_pred V (part12 V)"
using part12_pred[OF assms] unfolding part12_def by(rule someI_ex)
lemma part1_Un_part2: "infinite V ⟹ part1 V ∪ part2 V = V"
using part12 unfolding part1_def part2_def part12_pred_def by auto
lemma part1_Int_part2: "infinite V ⟹ part1 V ∩ part2 V = {}"
using part12 unfolding part1_def part2_def part12_pred_def by auto
lemma infinite_part1: "infinite V ⟹ infinite (part1 V)"
using part12 unfolding part1_def part12_pred_def by auto
lemma part1_su: "infinite V ⟹ part1 V ⊆ V"
using part1_Un_part2 by auto
lemma infinite_part2: "infinite V ⟹ infinite (part2 V)"
using part12 unfolding part2_def part12_pred_def by auto
lemma part2_su: "infinite V ⟹ part2 V ⊆ V"
using part1_Un_part2 by auto
end