Theory UFilterVariant
subsection‹Ultrafilter Variant (Fig.~5 in \<^cite>‹"C85"›)›
theory UFilterVariant imports
HOML
MFilter
BaseDefs
begin
text‹Axiom's of ultrafilter variant.›
axiomatization where
U1: "⌊UFilter 𝒫⌋" and
A2: "⌊❙∀X Y.(((𝒫 X) ❙∧ (X⇛Y)) ❙→ (𝒫 Y))⌋" and
A3: "⌊❙∀𝒵.((𝒫𝗈𝗌 𝒵) ❙→ (❙∀X.((X⨅𝒵) ❙→ (𝒫 X))))⌋"
text‹Necessary existence of a Godlike entity.›
theorem T6: "⌊❙□(❙∃⇧E 𝒢)⌋"
proof -
have T1: "⌊❙∀X.((𝒫 X) ❙→ ❙◇(❙∃⇧E X))⌋" by (metis A2 U1)
have T2: "⌊𝒫 𝒢⌋" by (metis A3 G_def)
have T3: "⌊❙◇(❙∃⇧E 𝒢)⌋" using T1 T2 by simp
have T5: "⌊(❙◇(❙∃⇧E 𝒢)) ❙→ ❙□(❙∃⇧E 𝒢)⌋" by (metis A2 G_def T2 U1)
thus ?thesis using T3 by blast qed
text‹Checking for consistency.›
lemma True nitpick[satisfy] oops
text‹Checking for modal collapse.›
lemma MC: "⌊❙∀Φ.(Φ ❙→ ❙□Φ)⌋" nitpick oops
end