Theory UFilterVariant

subsection‹Ultrafilter Variant (Fig.~5 in cite"C85")›

theory UFilterVariant imports 
  HOML 
  MFilter 
  BaseDefs
begin
text‹Axiom's of ultrafilter variant.› 
axiomatization where 
  U1: "UFilter 𝒫" and
  A2: "X Y.(((𝒫 X)  (XY))  (𝒫 Y))" and
  A3: "𝒵.((𝒫𝗈𝗌 𝒵)  (X.((X𝒵)  (𝒫 X))))" 

text‹Necessary existence of a Godlike entity.›  
theorem T6: "(E 𝒢)" ―‹Proof also found by sledgehammer›
proof -
  have T1: "X.((𝒫 X)  (E X))" by (metis A2 U1) 
  have T2: "𝒫 𝒢" by (metis A3 G_def)
  have T3: "(E 𝒢)" using T1 T2 by simp
  have T5: "((E 𝒢))  (E 𝒢)" by (metis A2 G_def T2 U1)
  thus ?thesis using T3 by blast qed

text‹Checking for consistency.›  
lemma True nitpick[satisfy] oops  ―‹Model found›

text‹Checking for modal collapse.›
lemma MC: "Φ.(Φ  Φ)" nitpick oops ―‹Countermodel›
end



(*
 definition ess ("ℰ") where "ℰ Y x ≡ Y x  (Z.(Z x  (Y⇛Z)))" 
 definition NE ("NE") where "NE x ≡ λw.((Y.(ℰ Y x  E Y)) w)"
 consts Godlike::γ UltraFilter::"(γ⇒σ)⇒σ" NeEx::γ
 axiomatization where 
  1: "Godlike = G" and 
  2: "UltraFilter = Ultrafilter" and
  3: "NeEx = NE"
 lemma True nitpick[satisfy] oops 
 lemma MC: "⌊Φ. Φ  Φ⌋" nitpick[format=8] oops (*Countermodel*)
 lemma A1: "⌊X. ¬(𝒫 X)  𝒫(X)⌋" using U1 by fastforce
 lemma A4: "⌊(𝒫 X  (𝒫 X))⌋" nitpick [format=4] oops (*Countermodel*)
 lemma A5: "⌊𝒫 NE⌋" nitpick oops (*Countermodel*)
*)