Theory BaseDefs

subsection‹Preliminaries: Further Basic Notions (Fig.~3 in cite"C85")›

theory BaseDefs imports HOML
begin  
text‹Positive properties.› 
consts posProp::"γσ" (𝒫)

text‹Basic definitions for modal ontological argument.›
abbreviation a (‹__›) where "XY  Ez.((X z)  (Y z))"
abbreviation b (‹__›) where "XY  (XY)"
abbreviation c (𝒫𝗈𝗌) where "𝒫𝗈𝗌 Z  X.((Z X)  (𝒫 X))"
abbreviation d (‹__›) where "X𝒵  (Eu.((X u)  (Y.((𝒵 Y)  (Y u)))))"

text‹Definition of Godlike.›
definition G (𝒢) where "𝒢 x  Y.((𝒫 Y)  (Y x))"

text‹Definitions of Essence and Necessary Existence.›
definition E () where " Y x  (Y x)  (Z.((Z x)  (YZ)))"
definition NE (𝒩ℰ) where "𝒩ℰ x  Y.(( Y x)  (E Y))"
end