Theory SimpleVariantSEinT
subsection‹Simplified Variant with Simple Entailment in Logic T (Fig.~9 in \<^cite>‹"C85"›)›
theory SimpleVariantSEinT imports
HOML
MFilter
BaseDefs
begin
text‹Axiom's of new variant based on ultrafilters.›
axiomatization where
A1': "⌊❙¬(𝒫(λx.(x❙≠x)))⌋" and
A2'': "⌊❙∀X Y.(((𝒫 X) ❙∧ (X❙⊑Y)) ❙→ (𝒫 Y))⌋" and
T2: "⌊𝒫 𝒢⌋"
text‹Modal Logic T.›
axiomatization where T: "⌊❙∀φ.((❙□φ) ❙→ φ)⌋"
lemma T': "⌊❙∀φ.(φ ❙→ (❙◇φ))⌋" by (metis T)
text‹Necessary existence of a Godlike entity.›
theorem T6: "⌊❙□(❙∃⇧E 𝒢)⌋"
proof -
have T1: "⌊❙∀X.((𝒫 X)❙→(❙◇(❙∃⇧E X)))⌋" by (metis A1' A2'' T')
have T3: "⌊❙◇(❙∃⇧E 𝒢)⌋" by (metis T1 T2)
have T5: "⌊(❙◇(❙∃⇧E 𝒢)) ❙→ ❙□(❙∃⇧E 𝒢)⌋" by (metis A1' A2'' T2)
thus ?thesis using T3 by simp qed
text‹T6 again, with an alternative, simpler proof.›
theorem T6again: "⌊❙□(❙∃⇧E 𝒢)⌋"
proof -
have L1: "⌊(❙∃X.((𝒫 X)❙∧❙¬(❙∃⇧EX)))❙→(𝒫(λx.(x❙≠x)))⌋"
by (smt A2'')
have L2: "⌊❙¬(❙∃X.((𝒫 X) ❙∧ ❙¬(❙∃⇧E X)))⌋" by (metis L1 A1')
have T1': "⌊❙∀X.((𝒫 X) ❙→ (❙∃⇧E X))⌋" by (metis L2)
have T3': "⌊❙∃⇧E 𝒢⌋" by (metis T1' T2)
have L3: "⌊❙◇(❙∃⇧E 𝒢)⌋" by (metis T3' T')
thus ?thesis using T3' by simp qed
end