Theory SimpleVariantPG
subsection‹Simplified Variant with Axiom T2 (Fig.~7 in \<^cite>‹"C85"›)›
theory SimpleVariantPG imports
HOML
MFilter
BaseDefs
begin
text‹Axiom's of simplified variant with A3 replaced.›
axiomatization where
A1': "⌊❙¬(𝒫(λx.(x❙≠x)))⌋" and
A2': "⌊❙∀X Y.(((𝒫 X) ❙∧ ((X❙⊑Y)❙∨(X⇛Y))) ❙→ (𝒫 Y))⌋" and
T2: "⌊𝒫 𝒢⌋"
text‹Necessary existence of a Godlike entity.›
theorem T6: "⌊❙□(❙∃⇧E 𝒢)⌋"
proof -
have T1: "⌊❙∀X.((𝒫 X) ❙→ ❙◇(❙∃⇧E X))⌋" by (metis A1' A2')
have T3: "⌊❙◇(❙∃⇧E 𝒢)⌋" using T1 T2 by simp
have T5: "⌊(❙◇(❙∃⇧E 𝒢)) ❙→ ❙□(❙∃⇧E 𝒢)⌋" by (metis A1' A2' T2)
thus ?thesis using T3 by blast qed
lemma True nitpick[satisfy] oops
text‹Modal collapse and Monotheism: not implied.›
lemma MC: "⌊❙∀Φ.(Φ ❙→ ❙□Φ)⌋" nitpick oops
lemma MT: "⌊❙∀x y.(((𝒢 x)❙∧(𝒢 y))❙→(x❙=y))⌋" nitpick oops
end