Theory SimpleVariantHF
subsection‹Hauptfiltervariant (Fig.~10 in \<^cite>‹"C85"›)›
theory SimpleVariantHF imports
HOML
MFilter
BaseDefs
begin
text‹Definition: Set of supersets of ‹X›, we call this ‹ℋℱ X›.›
abbreviation HF::"γ⇒(γ⇒σ)" where "HF X ≡ λY.(X❙⊑Y)"
text‹Postulate: ‹ℋℱ 𝒢› is a filter; i.e., Hauptfilter of ‹𝒢›.›
axiomatization where F1: "⌊Filter (HF 𝒢)⌋"
text‹Necessary existence of a Godlike entity.›
theorem T6: "⌊❙□(❙∃⇧E 𝒢)⌋" using F1 by auto
theorem T6again: "⌊❙□(❙∃⇧E 𝒢)⌋"
proof -
have T3': "⌊❙∃⇧E 𝒢⌋" using F1 by auto
have T6: "⌊❙□(❙∃⇧E 𝒢)⌋" using T3' by blast
thus ?thesis by simp qed
text‹Possible existence of Godlike entity not implied.›
lemma T3: "⌊❙◇(❙∃⇧E 𝒢)⌋" nitpick oops
text‹Axiom T enforces possible existence of Godlike entity.›
axiomatization
lemma T3: assumes T: "⌊❙∀φ.((❙□φ) ❙→ φ)⌋"
shows "⌊❙◇(❙∃⇧E 𝒢)⌋" using F1 T by auto
lemma True nitpick[satisfy] oops
text‹Modal collapse: not implied anymore.›
lemma MC: "⌊❙∀Φ.(Φ ❙→ ❙□Φ)⌋" nitpick oops
lemma MT: "⌊❙∀x y.(((𝒢 x) ❙∧ (𝒢 y)) ❙→ (x❙=y))⌋"
nitpick oops
end