Theory SimpleVariantHF

subsection‹Hauptfiltervariant (Fig.~10 in cite"C85")›

theory SimpleVariantHF imports
  HOML 
  MFilter 
  BaseDefs
begin
text‹Definition: Set of supersets of X›, we call this ℋℱ X›.›
abbreviation HF::"γ(γσ)"  where "HF X  λY.(XY)"

text‹Postulate: ℋℱ 𝒢› is a filter; i.e., Hauptfilter of 𝒢›.› 
axiomatization where F1: "Filter (HF 𝒢)" 

text‹Necessary existence of a Godlike entity.› 
theorem T6: "(E 𝒢)" using F1 by auto ―‹Proof found›

theorem T6again: "(E 𝒢)"  
proof -
 have T3': "E 𝒢" using F1 by auto
 have T6:  "(E 𝒢)" using T3' by blast 
 thus ?thesis by simp qed

text‹Possible existence of Godlike entity not implied.›
lemma T3: "(E 𝒢)" nitpick oops  ―‹Countermodel›

text‹Axiom T enforces possible existence of Godlike entity.›
axiomatization 
lemma T3: assumes T: "φ.((φ)  φ)"
          shows "(E 𝒢)" using F1 T by auto

lemma True nitpick[satisfy] oops ―‹Consistency: model found›

text‹Modal collapse: not implied anymore.›
lemma MC: "Φ.(Φ  Φ)" nitpick oops  ―‹Countermodel›
lemma MT: "x y.(((𝒢 x)  (𝒢 y))  (x=y))" 
          nitpick oops ―‹Countermodel›
end