Theory SimpleVariant
subsection‹Simplified Variant (Fig.~6 in \<^cite>‹"C85"›)›
theory SimpleVariant imports
HOML
MFilter
BaseDefs
begin
text‹Axiom's of new, simplified variant.›
axiomatization where
A1': "⌊❙¬(𝒫(λx.(x❙≠x)))⌋" and
A2': "⌊❙∀X Y.(((𝒫 X) ❙∧ ((X❙⊑Y) ❙∨ (X⇛Y))) ❙→ (𝒫 Y))⌋" and
A3: "⌊❙∀𝒵.((𝒫𝗈𝗌 𝒵) ❙→ (❙∀X.((X⨅𝒵) ❙→ (𝒫 X))))⌋"
lemma T2: "⌊𝒫 𝒢⌋" by (metis A3 G_def)
lemma L1: "⌊𝒫(λx.(x❙=x))⌋" by (metis A2' A3)
text‹Necessary existence of a Godlike entity.›
theorem T6: "⌊❙□(❙∃⇧E 𝒢)⌋"
proof -
have T1: "⌊❙∀X.((𝒫 X) ❙→ ❙◇(❙∃⇧E X))⌋" by (metis A1' A2')
have T3: "⌊❙◇(❙∃⇧E 𝒢)⌋" using T1 T2 by simp
have T5: "⌊(❙◇(❙∃⇧E 𝒢)) ❙→ ❙□(❙∃⇧E 𝒢)⌋" by (metis A1' A2' T2)
thus ?thesis using T3 by blast qed
lemma True nitpick[satisfy] oops
text‹Modal collapse and monotheism: not implied.›
lemma MC: "⌊❙∀Φ.(Φ ❙→ ❙□Φ)⌋" nitpick oops
lemma MT: "⌊❙∀x y.(((𝒢 x) ❙∧ (𝒢 y)) ❙→ (x❙=y))⌋"
nitpick oops
text‹Gödel's A1, A4, A5: not implied anymore.›
lemma A1: "⌊❙∀X.((❙¬(𝒫 X))❙↔(𝒫(❙⇁X)))⌋" nitpick oops
lemma A4: "⌊❙∀X.((𝒫 X) ❙→ ❙□(𝒫 X))⌋" nitpick oops
lemma A5: "⌊𝒫 𝒩ℰ⌋" nitpick oops
text‹Checking filter and ultrafilter properties.›
theorem F1: "⌊Filter 𝒫⌋" oops
theorem U1: "⌊UFilter 𝒫⌋" nitpick oops
end