Theory ScottVariant
subsection‹Ultrafilter Analysis of Scott's Variant (Fig.~3 in \<^cite>‹"C85"›))›
theory ScottVariant imports
HOML
MFilter
BaseDefs
begin
text‹Axioms of Scott's variant.›
axiomatization where
A1: "⌊❙∀X.((❙¬(𝒫 X)) ❙↔ (𝒫(❙⇁X)))⌋" and
A2: "⌊❙∀X Y.(((𝒫 X) ❙∧ (X⇛Y)) ❙→ (𝒫 Y))⌋" and
A3: "⌊❙∀𝒵.((𝒫𝗈𝗌 𝒵) ❙→ (❙∀X.((X⨅𝒵) ❙→ (𝒫 X))))⌋" and
A4: "⌊❙∀X.((𝒫 X) ❙→ ❙□(𝒫 X))⌋" and
A5: "⌊𝒫 𝒩ℰ⌋" and
B: "⌊❙∀φ.(φ ❙→ ❙□❙◇φ)⌋"
lemma B': "∀x y. ¬(x❙ry) ∨ (y❙rx)" using B by fastforce
text‹Necessary existence of a Godlike entity.›
theorem T6: "⌊❙□(❙∃⇧E 𝒢)⌋"
proof -
have T1: "⌊❙∀X.((𝒫 X) ❙→ ❙◇(❙∃⇧E X))⌋" using A1 A2 by blast
have T2: "⌊𝒫 𝒢⌋" by (metis A3 G_def)
have T3: "⌊❙◇(❙∃⇧E 𝒢)⌋" using T1 T2 by simp
have T4: "⌊❙∀⇧Ex.((𝒢 x)❙→(ℰ 𝒢 x))⌋" unfolding G_def E_def using A1 A4 by metis
have T5: "⌊(❙◇(❙∃⇧E𝒢))❙→ ❙□(❙∃⇧E𝒢)⌋" by (smt A5 G_def B' NE_def T4)
thus ?thesis using T3 by blast qed
text‹Existence of a Godlike entity.›
lemma "⌊❙∃⇧E 𝒢⌋" using A1 A2 B' T6 by blast
text‹Consistency›
lemma True nitpick[satisfy] oops
text‹Modal collapse: holds.›
lemma MC: "⌊❙∀Φ.(Φ ❙→ ❙□Φ)⌋"
proof - {
fix w fix Q
have 1: "∀x.((𝒢 x w) ⟶ (❙∀Z.((Z x) ❙→ ❙□(❙∀⇧Ez.((𝒢 z) ❙→ (Z z))))) w)"
by (metis A1 A4 G_def)
have 2: "(∃x. 𝒢 x w)⟶((Q ❙→ ❙□(❙∀⇧Ez.((𝒢 z) ❙→ Q))) w)"
using 1 by force
have 3: "(Q ❙→ ❙□Q) w" using B' T6 2 by blast}
thus ?thesis by auto qed
text‹Analysis of positive properties using ultrafilters.›
theorem U1: "⌊UFilter 𝒫⌋"
proof -
have 1: "⌊(❙U❙∈𝒫) ❙∧ ❙¬(❙∅❙∈𝒫)⌋" using A1 A2 by blast
have 2: "⌊❙∀φ ψ.(((φ❙∈𝒫)❙∧(φ❙⊆ψ))❙→(ψ❙∈𝒫))⌋" by (smt A2 B' MC)
have 3: "⌊❙∀φ ψ.(((φ❙∈𝒫)❙∧(ψ❙∈𝒫))❙→((φ❙⊓ψ)❙∈𝒫))⌋" by (metis A1 A2 G_def B' T6)
have 4: "⌊❙∀φ.((φ❙∈𝒫) ❙∨ ((¯φ)❙∈𝒫))⌋" using A1 by blast
thus ?thesis using 1 2 3 4 by simp qed
lemma L1: "⌊❙∀X Y.((X⇛Y) ❙→ (X❙⊑Y))⌋" by (metis A1 A2 MC)
lemma L2: "⌊❙∀X Y.(((𝒫 X) ❙∧ (X❙⊑Y)) ❙→ (𝒫 Y))⌋" by (smt A2 B' MC)
text‹Set of supersets of X, we call this HF X.›
abbreviation HF where "HF X ≡ λY.(X❙⊑Y)"
text‹‹HF 𝒢› is a filter; hence, ‹HF 𝒢› is Hauptfilter of ‹𝒢›.›
lemma F1: "⌊Filter (HF 𝒢)⌋" by (metis A2 B' T6 U1)
lemma F2: "⌊UFilter (HF 𝒢)⌋" by (smt A1 F1 G_def)
text‹T6 follows directly from F1.›
theorem T6again: "⌊❙□(❙∃⇧E 𝒢)⌋" using F1 by simp
end