Theory Evaluation
section ‹Evaluation›
theory Evaluation
imports
Safe_Distance
"HOL-Library.Float"
begin
subsection ‹Code Generation Setup for Numeric Values›
definition real_div_down :: "nat ⇒ int ⇒ int ⇒ real" where
"real_div_down p i j = truncate_down (Suc p) (i / j)"
definition real_div_up :: "nat ⇒ int ⇒ int ⇒ real" where
"real_div_up p i j = truncate_up (Suc p) (i / j)"
context includes float.lifting begin
lift_definition float_div_down :: "nat ⇒ int ⇒ int ⇒ float" is real_div_down
by (simp add: real_div_down_def)
lift_definition float_div_up :: "nat ⇒ int ⇒ int ⇒ float" is real_div_up
by (simp add: real_div_up_def)
end
lemma compute_float_div_up[code]: "float_div_up p i j = - float_div_down p (-i) j"
including float.lifting
by transfer (simp add: real_div_up_def real_div_down_def truncate_up_eq_truncate_down)
lemma compute_float_div_down[code]:
"float_div_down prec m1 m2 = lapprox_rat (Suc prec) m1 m2"
including float.lifting by transfer (simp add: real_div_down_def)
definition real2_of_real :: "nat ⇒ real ⇒ (real * real)" where
"real2_of_real p x = (truncate_down (Suc p) x, truncate_up (Suc p) x)"
context includes float.lifting begin
lift_definition float2_of_real :: "nat ⇒ real ⇒ float × float" is real2_of_real
by (auto simp: real2_of_real_def)
end
definition float2_opt_of_real :: "nat ⇒ real ⇒ float interval option" where
"float2_opt_of_real prec x = Interval' (fst (float2_of_real prec x)) (snd (float2_of_real prec x))"
hide_const (open) Fraction_Field.Fract
lemma real_of_rat_Fract[simp]: "real_of_rat (Fract a b) = a / b"
by (simp add: Fract_of_int_quotient of_rat_divide)
lemma [code]: "float2_of_real p (Ratreal r) =
(let (a, b) = quotient_of r in
(float_div_down p a b, float_div_up p a b))"
including float.lifting
apply transfer
apply (auto split: prod.split simp: real2_of_real_def real_div_down_def real_div_up_def)
apply (metis of_rat_divide of_rat_of_int_eq quotient_of_div)+
done
fun real_of_dec :: "integer × integer ⇒ real" where
"real_of_dec (m, e) =
real_of_int (int_of_integer m) *
(if e ≥ 0 then 10 ^ (nat_of_integer e) else inverse (10 ^ (nat (-(int_of_integer e)))))"
lemma "real_of_dec (m, e) = int_of_integer m * 10 powr (int_of_integer e)"
proof -
have 1: "e ≥ 0 ⟹ real (nat_of_integer e) = real_of_int (int_of_integer e)"
using less_eq_integer.rep_eq nat_of_integer.rep_eq by auto
have 2: "e ≤ 0 ⟹ real_of_int (int_of_integer e) = - real (nat (- int_of_integer e))"
using less_eq_integer.rep_eq by auto
show ?thesis
using 1
apply (auto simp: powr_realpow[symmetric] divide_simps)
apply (subst (asm) 2)
apply (auto simp: powr_add[symmetric])
done
qed
subsection ‹Data Evaluation›
definition trans6 where
"trans6 c chk se ve ae so vo ao =
chk (c se) (c ve) (c ae) (c so) (c vo) (c ao)"
definition checker_dec where
"checker_dec chk p u =
trans6 (float2_opt_of_real (nat_of_integer u) o real_of_dec) (chk (nat_of_integer p))"
definition "checker_interval = checker_dec checker'"
definition "checker_symbolic = trans6 real_of_dec symbolic_checker"
definition "checker_rational = trans6 real_of_dec checker"
lemmas[code] = movement.p_def
ML ‹
exception InvalidArgument of string;
fun split_string s = String.fields (fn c => c = the (Char.fromString s))
fun dec_of_string s =
case split_string "." s
of [r] => (the (IntInf.fromString r), 0)
| [d1, d2] => (the (IntInf.fromString (d1 ^ d2)), ~ (String.size d2))
| _ => raise (InvalidArgument s)
fun check_string chk data =
case split_string "," data of
[_, so, _, ve, ae, _, vo, ao] => chk data (0, 0)
(dec_of_string ve) (dec_of_string ae) (dec_of_string so) (dec_of_string vo) (dec_of_string ao)
| _ => raise (InvalidArgument data)
›
text ‹The precision of the input data is roughly 12 and yields similar performance as Sturm›
ML ‹
val prec = 12
local
exception Result of int * int;
fun check_line chk n l (y, i) =
let
val l = String.substring (l, 0, String.size l - 1)
val c = check_string chk l
in if i < n then (if c then y + 1 else y, i + 1) else raise Result (y, i) end
in
fun check_file chk path n =
let
val data =
path
|> Bytes.read
|> XZ.uncompress
|> Bytes.trim_split_lines
in
fold (check_line chk n) data (0, 0)
end
handle Result res => res;
end
val check_file_symbolic = check_file (fn _ => \<^code>‹checker_symbolic›)
fun check_file_interval prec uncer = check_file (fn _ => \<^code>‹checker_interval› prec uncer)
val check_file_rational = check_file (fn _ => \<^code>‹checker_rational›)
›
text ‹Number of data points:
▪ data01: 1121215
▪ data02: 1341135
▪ data03: 1452656
›
ML ‹
val data01 = \<^master_dir> + \<^path>‹data/data01.csv.xz›
val data02 = \<^master_dir> + \<^path>‹data/data02.csv.xz›
val data03 = \<^master_dir> + \<^path>‹data/data03.csv.xz›
›
ML ‹
val t_start1 = Timing.start ();
val result1 = check_file_rational data01 100;
val t_end1 = Timing.result t_start1;
\<^assert> (result1 = (96, 100));
›
ML ‹
val t_start2 = Timing.start ();
val result2 = check_file_rational data02 100;
val t_end2 = Timing.result t_start2;
\<^assert> (result2 = (100, 100));
›
ML ‹
val t_start3 = Timing.start ();
val result3 = check_file_rational data03 100;
val t_end3 = Timing.result t_start3;
\<^assert> (result3 = (76, 100));
›
text ‹Precision: 12, Uncertainty: 7 digits›
ML ‹\<^assert> (check_file_interval 12 7 data01 100 = (95, 100))›
ML ‹\<^assert> (check_file_rational data01 100 = (96, 100))›
ML ‹\<^assert> (check_file_symbolic data01 100 = (96, 100))›
end