Theory QBS_Morphism
subsection ‹ Morphisms of Quasi-Borel Spaces ›
theory QBS_Morphism
imports
"QuasiBorel"
begin
abbreviation qbs_morphism :: "['a quasi_borel, 'b quasi_borel] ⇒ ('a ⇒ 'b) set" (infixr ‹→⇩Q› 60) where
"X →⇩Q Y ≡ qbs_space (X ⇒⇩Q Y)"
lemma qbs_morphismI: "(⋀α. α ∈ qbs_Mx X ⟹ f ∘ α ∈ qbs_Mx Y) ⟹ f ∈ X →⇩Q Y"
by(auto simp: exp_qbs_space)
lemma qbs_morphism_def: "X →⇩Q Y = {f∈qbs_space X → qbs_space Y. ∀α ∈ qbs_Mx X. f ∘ α ∈ qbs_Mx Y}"
unfolding exp_qbs_space
proof safe
fix f x
assume h:"x ∈ qbs_space X " "∀α∈qbs_Mx X. f ∘ α ∈ qbs_Mx Y"
then have "(λr. x) ∈ qbs_Mx X"
by simp
hence "f ∘ (λr. x) ∈ qbs_Mx Y"
using h by blast
with qbs_Mx_to_X show "f x ∈ qbs_space Y"
by auto
qed auto
lemma qbs_morphism_Mx:
assumes "f ∈ X →⇩Q Y" "α ∈ qbs_Mx X"
shows "f ∘ α ∈ qbs_Mx Y"
using assms by(auto simp: qbs_morphism_def)
lemma qbs_morphism_space:
assumes "f ∈ X →⇩Q Y" "x ∈ qbs_space X"
shows "f x ∈ qbs_space Y"
using assms by(auto simp: qbs_morphism_def)
lemma qbs_morphism_ident[simp]:
"id ∈ X →⇩Q X"
by(auto intro: qbs_morphismI)
lemma qbs_morphism_ident'[simp]:
"(λx. x) ∈ X →⇩Q X"
using qbs_morphism_ident by(simp add: id_def)
lemma qbs_morphism_comp:
assumes "f ∈ X →⇩Q Y" "g ∈ Y →⇩Q Z"
shows "g ∘ f ∈ X →⇩Q Z"
using assms by (simp add: comp_assoc Pi_def qbs_morphism_def)
lemma qbs_morphism_compose_rev:
assumes "f ∈ Y →⇩Q Z" and "g ∈ X →⇩Q Y"
shows "(λx. f (g x)) ∈ X →⇩Q Z"
using qbs_morphism_comp[OF assms(2,1)] by(simp add: comp_def)
lemma qbs_morphism_compose:
assumes "g ∈ X →⇩Q Y" and "f ∈ Y →⇩Q Z"
shows "(λx. f (g x)) ∈ X →⇩Q Z"
using qbs_morphism_compose_rev[OF assms(2,1)] .
lemma qbs_morphism_cong':
assumes "⋀x. x ∈ qbs_space X ⟹ f x = g x"
and "f ∈ X →⇩Q Y"
shows "g ∈ X →⇩Q Y"
proof(rule qbs_morphismI)
fix α
assume 1:"α ∈ qbs_Mx X"
have "g ∘ α = f ∘ α"
proof
fix x
have "α x ∈ qbs_space X"
using 1 qbs_decomp[of X] qbs_Mx_to_X by auto
thus "(g ∘ α) x = (f ∘ α) x"
using assms(1) by simp
qed
thus "g ∘ α ∈ qbs_Mx Y"
using 1 assms(2) by(simp add: qbs_morphism_def)
qed
lemma qbs_morphism_cong:
assumes "⋀x. x ∈ qbs_space X ⟹ f x = g x"
shows "f ∈ X →⇩Q Y ⟷ g ∈ X →⇩Q Y"
using assms by(auto simp: qbs_morphism_cong'[of _ f g] qbs_morphism_cong'[of _ g f])
lemma qbs_morphism_const:
assumes "y ∈ qbs_space Y"
shows "(λx. y) ∈ X →⇩Q Y"
using assms by (auto intro: qbs_morphismI)
lemma qbs_morphism_from_empty: "qbs_space X = {} ⟹ f ∈ X →⇩Q Y"
by(auto intro!: qbs_morphismI simp: qbs_empty_equiv)
lemma unit_quasi_borel_terminal: "∃! f. f ∈ X →⇩Q unit_quasi_borel"
by(fastforce simp: qbs_morphism_def)
definition to_unit_quasi_borel :: "'a ⇒ unit" (‹!⇩Q›) where
"to_unit_quasi_borel ≡ (λr.())"
lemma to_unit_quasi_borel_morphism:
"!⇩Q ∈ X →⇩Q unit_quasi_borel"
by(auto simp add: to_unit_quasi_borel_def qbs_morphism_def)
lemma qbs_morphism_subD:
assumes "f ∈ X →⇩Q sub_qbs Y A"
shows "f ∈ X →⇩Q Y"
using qbs_morphism_Mx[OF assms] by(auto intro!: qbs_morphismI simp: sub_qbs_Mx)
lemma qbs_morphism_subI1:
assumes "f ∈ X →⇩Q Y" "⋀x. x ∈ qbs_space X ⟹ f x ∈ A"
shows "f ∈ X →⇩Q sub_qbs Y A"
using qbs_morphism_space[OF assms(1)] qbs_morphism_Mx[OF assms(1)] assms(2) qbs_Mx_to_X[of _ X]
by(auto intro!: qbs_morphismI simp: sub_qbs_Mx)
lemma qbs_morphism_subI2:
assumes "f ∈ X →⇩Q Y"
shows "f ∈ sub_qbs X A →⇩Q Y"
using qbs_morphism_Mx[OF assms] by(auto intro!: qbs_morphismI simp: sub_qbs_Mx)
corollary qbs_morphism_subsubI:
assumes "f ∈ X →⇩Q Y" "⋀x. x ∈ A ⟹ f x ∈ B"
shows "f ∈ sub_qbs X A →⇩Q sub_qbs Y B"
by(rule qbs_morphism_subI1) (auto intro!: qbs_morphism_subI2 assms simp: sub_qbs_space)
lemma map_qbs_morphism_f: "f ∈ X →⇩Q map_qbs f X"
by(auto intro!: qbs_morphismI simp: map_qbs_Mx)
lemma map_qbs_morphism_inverse_f:
assumes "⋀x. x ∈ qbs_space X ⟹ g (f x) = x"
shows "g ∈ map_qbs f X →⇩Q X"
proof -
{
fix α
assume h:"α ∈ qbs_Mx X"
from qbs_Mx_to_X[OF this] assms have "g ∘ (f ∘ α) = α"
by auto
with h have "g ∘ (f ∘ α) ∈ qbs_Mx X" by simp
}
thus ?thesis
by(auto intro!: qbs_morphismI simp: map_qbs_Mx)
qed
lemma pair_qbs_morphismI:
assumes "⋀α β. α ∈ qbs_Mx X ⟹ β ∈ qbs_Mx Y
⟹ (λr. f (α r, β r)) ∈ qbs_Mx Z"
shows "f ∈ (X ⨂⇩Q Y) →⇩Q Z"
using assms by(fastforce intro!: qbs_morphismI simp: pair_qbs_Mx comp_def)
lemma pair_qbs_MxD:
assumes "γ ∈ qbs_Mx (X ⨂⇩Q Y)"
obtains α β where "α ∈ qbs_Mx X" "β ∈ qbs_Mx Y" "γ = (λx. (α x, β x))"
using assms by(auto simp: pair_qbs_Mx)
lemma pair_qbs_MxI:
assumes "(λx. fst (γ x)) ∈ qbs_Mx X" and "(λx. snd (γ x)) ∈ qbs_Mx Y"
shows "γ ∈ qbs_Mx (X ⨂⇩Q Y)"
using assms by(auto simp: pair_qbs_Mx comp_def)
lemma
shows fst_qbs_morphism: "fst ∈ X ⨂⇩Q Y →⇩Q X"
and snd_qbs_morphism: "snd ∈ X ⨂⇩Q Y →⇩Q Y"
by(auto intro!: pair_qbs_morphismI simp: comp_def)
lemma qbs_morphism_pair_iff:
"f ∈ X →⇩Q Y ⨂⇩Q Z ⟷ fst ∘ f ∈ X →⇩Q Y ∧ snd ∘ f ∈ X →⇩Q Z"
by(auto intro!: qbs_morphism_comp fst_qbs_morphism snd_qbs_morphism)
(auto dest: qbs_morphism_Mx intro!: qbs_morphismI simp: pair_qbs_Mx comp_assoc[symmetric])
lemma qbs_morphism_Pair:
assumes "f ∈ Z →⇩Q X"
and "g ∈ Z →⇩Q Y"
shows "(λz. (f z, g z)) ∈ Z →⇩Q X ⨂⇩Q Y"
unfolding qbs_morphism_pair_iff
using assms by (auto simp: comp_def)
lemma qbs_morphism_curry: "curry ∈ exp_qbs (X ⨂⇩Q Y) Z →⇩Q exp_qbs X (exp_qbs Y Z)"
by(auto intro!: qbs_morphismI simp: pair_qbs_Mx exp_qbs_Mx comp_def)
corollary curry_preserves_morphisms:
assumes "(λxy. f (fst xy) (snd xy)) ∈ X ⨂⇩Q Y →⇩Q Z"
shows "f ∈ X →⇩Q Y ⇒⇩Q Z"
using qbs_morphism_space[OF qbs_morphism_curry assms] by (auto simp: curry_def)
lemma qbs_morphism_eval:
"(λfx. (fst fx) (snd fx)) ∈ (X ⇒⇩Q Y) ⨂⇩Q X →⇩Q Y"
by(auto intro!: qbs_morphismI simp: pair_qbs_Mx exp_qbs_Mx comp_def)
corollary qbs_morphism_app:
assumes "f ∈ X →⇩Q (Y ⇒⇩Q Z)" "g ∈ X →⇩Q Y"
shows "(λx. (f x) (g x)) ∈ X →⇩Q Z"
by(rule qbs_morphism_cong'[where f="(λfx. (fst fx) (snd fx)) ∘ (λx. (f x, g x))",OF _ qbs_morphism_comp[OF qbs_morphism_Pair[OF assms] qbs_morphism_eval]]) auto
ML_file ‹qbs.ML›
attribute_setup qbs = ‹
Attrib.add_del Qbs.qbs_add Qbs.qbs_del›
"declaration of qbs rule"
method_setup qbs = ‹ Scan.lift (Scan.succeed (METHOD o Qbs.qbs_tac))›
simproc_setup qbs ("x ∈ qbs_space X") = ‹K Qbs.simproc›
declare
fst_qbs_morphism[qbs]
snd_qbs_morphism[qbs]
qbs_morphism_const[qbs]
qbs_morphism_ident[qbs]
qbs_morphism_ident'[qbs]
qbs_morphism_curry[qbs]
lemma [qbs]:
shows qbs_morphism_Pair1: "Pair ∈ X →⇩Q Y ⇒⇩Q (X ⨂⇩Q Y)"
by(auto intro!: qbs_morphismI simp: exp_qbs_Mx pair_qbs_Mx comp_def)
lemma qbs_morphism_case_prod[qbs]: "case_prod ∈ exp_qbs X (exp_qbs Y Z) →⇩Q exp_qbs (X ⨂⇩Q Y) Z"
by(fastforce intro!: qbs_morphismI simp: exp_qbs_Mx pair_qbs_Mx comp_def split_beta')
lemma uncurry_preserves_morphisms:
assumes [qbs]:"(λx y. f (x,y)) ∈ X →⇩Q Y ⇒⇩Q Z"
shows "f ∈ X ⨂⇩Q Y →⇩Q Z"
by(rule qbs_morphism_cong'[where f="case_prod (λx y. f (x,y))"],simp) qbs
lemma qbs_morphism_comp'[qbs]:"comp ∈ Y ⇒⇩Q Z →⇩Q (X ⇒⇩Q Y) ⇒⇩Q X ⇒⇩Q Z"
by(auto intro!: qbs_morphismI simp: exp_qbs_Mx)
lemma arg_swap_morphism:
assumes "f ∈ X →⇩Q exp_qbs Y Z"
shows "(λy x. f x y) ∈ Y →⇩Q exp_qbs X Z"
using assms by simp
lemma exp_qbs_comp_morphism:
assumes "f ∈ W →⇩Q exp_qbs X Y"
and "g ∈ W →⇩Q exp_qbs Y Z"
shows "(λw. g w ∘ f w) ∈ W →⇩Q exp_qbs X Z"
using assms by qbs
lemma arg_swap_morphism_map_qbs1:
assumes "g ∈ exp_qbs W (exp_qbs X Y) →⇩Q Z"
shows "(λk. g (k ∘ f)) ∈ exp_qbs (map_qbs f W) (exp_qbs X Y) →⇩Q Z"
using assms map_qbs_morphism_f by qbs
lemma qbs_morphism_map_prod[qbs]: "map_prod ∈ X ⇒⇩Q Y →⇩Q (W ⇒⇩Q Z) ⇒⇩Q (X ⨂⇩Q W) ⇒⇩Q (Y ⨂⇩Q Z)"
by(auto intro!: qbs_morphismI simp: exp_qbs_Mx pair_qbs_Mx map_prod_def comp_def case_prod_beta')
lemma qbs_morphism_pair_swap:
assumes "f ∈ X ⨂⇩Q Y →⇩Q Z"
shows "(λ(x,y). f (y,x)) ∈ Y ⨂⇩Q X →⇩Q Z"
using assms by simp
lemma
shows qbs_morphism_pair_assoc1: "(λ((x,y),z). (x,(y,z))) ∈ (X ⨂⇩Q Y) ⨂⇩Q Z →⇩Q X ⨂⇩Q (Y ⨂⇩Q Z)"
and qbs_morphism_pair_assoc2: "(λ(x,(y,z)). ((x,y),z)) ∈ X ⨂⇩Q (Y ⨂⇩Q Z) →⇩Q (X ⨂⇩Q Y) ⨂⇩Q Z"
by simp_all
lemma Inl_qbs_morphism[qbs]: "Inl ∈ X →⇩Q X ⨁⇩Q Y"
by(auto intro!: qbs_morphismI bexI[where x="{}"] simp: copair_qbs_Mx copair_qbs_Mx_def comp_def)
lemma Inr_qbs_morphism[qbs]: "Inr ∈ Y →⇩Q X ⨁⇩Q Y"
by(auto intro!: qbs_morphismI bexI[where x="UNIV"] simp: copair_qbs_Mx copair_qbs_Mx_def comp_def)
lemma case_sum_qbs_morphism[qbs]: "case_sum ∈ X ⇒⇩Q Z →⇩Q (Y ⇒⇩Q Z) ⇒⇩Q (X ⨁⇩Q Y ⇒⇩Q Z)"
by(auto intro!: qbs_morphismI qbs_Mx_indicat simp: copair_qbs_Mx copair_qbs_Mx_def exp_qbs_Mx case_sum_if)
lemma map_sum_qbs_morphism[qbs]: "map_sum ∈ X ⇒⇩Q Y →⇩Q (X' ⇒⇩Q Y') ⇒⇩Q (X ⨁⇩Q X' ⇒⇩Q Y ⨁⇩Q Y')"
proof(rule qbs_morphismI)
fix α
assume "α ∈ qbs_Mx (X ⇒⇩Q Y)"
then have ha[measurable]: "∀(k :: real ⇒ real)∈borel_measurable borel. ∀a∈qbs_Mx X. (λr. α (k r) (a r)) ∈ qbs_Mx Y"
by (auto simp: exp_qbs_Mx)
show "map_sum ∘ α ∈ qbs_Mx ((X' ⇒⇩Q Y') ⇒⇩Q X ⨁⇩Q X' ⇒⇩Q Y ⨁⇩Q Y')"
unfolding exp_qbs_Mx
proof safe
fix β b and f g :: "real ⇒ real"
assume h[measurable]: "∀(k :: real ⇒ real)∈borel_measurable borel. ∀b∈qbs_Mx X'. (λr. β (k r) (b r)) ∈ qbs_Mx Y'"
"f ∈ borel_measurable borel" "g ∈ borel_measurable borel"
and b: "b ∈ qbs_Mx (X ⨁⇩Q X')"
show "(λr. (map_sum ∘ α) (f (g r)) (β (g r)) (b r)) ∈ qbs_Mx (Y ⨁⇩Q Y')"
proof(rule copair_qbs_MxD[OF b])
fix a
assume "a ∈ qbs_Mx X" "b = (λr. Inl (a r))"
with ha show "(λr. (map_sum ∘ α) (f (g r)) (β (g r)) (b r)) ∈ qbs_Mx (Y ⨁⇩Q Y')"
by(auto simp: copair_qbs_Mx copair_qbs_Mx_def intro!: bexI[where x="{}"])
next
fix a
assume "a ∈ qbs_Mx X'" "b = (λr. Inr (a r))"
with h(1) show "(λr. (map_sum ∘ α) (f (g r)) (β (g r)) (b r)) ∈ qbs_Mx (Y ⨁⇩Q Y')"
by(auto simp: copair_qbs_Mx copair_qbs_Mx_def intro!: bexI[where x="UNIV"])
next
fix S a a'
assume "S ∈ sets borel" "S ≠ {}" "S ≠ UNIV" "a ∈ qbs_Mx X" "a' ∈ qbs_Mx X'" "b = (λr. if r ∈ S then Inl (a r) else Inr (a' r))"
with h ha show "(λr. (map_sum ∘ α) (f (g r)) (β (g r)) (b r)) ∈ qbs_Mx (Y ⨁⇩Q Y')"
by simp (fastforce simp: copair_qbs_Mx copair_qbs_Mx_def intro!: bexI[where x=S])
qed
qed
qed
lemma qbs_morphism_component_singleton[qbs]:
assumes "i ∈ I"
shows "(λx. x i) ∈ (Π⇩Q i∈I. (M i)) →⇩Q M i"
by(auto intro!: qbs_morphismI simp: comp_def assms PiQ_Mx)
lemma qbs_morphism_component_singleton':
assumes "f ∈ Y →⇩Q (Π⇩Q i∈I. X i)" "g ∈ Z →⇩Q Y" "i ∈ I"
shows "(λx. f (g x) i) ∈ Z →⇩Q X i"
by(auto intro!: qbs_morphism_compose[OF assms(2)] qbs_morphism_compose[OF assms(1)] qbs_morphism_component_singleton assms)
lemma product_qbs_canonical1:
assumes "⋀i. i ∈ I ⟹ f i ∈ Y →⇩Q X i"
and "⋀i. i ∉ I ⟹ f i = (λy. undefined)"
shows "(λy i. f i y) ∈ Y →⇩Q (Π⇩Q i∈I. X i)"
using assms qbs_morphism_Mx[OF assms(1)] by(auto intro!: qbs_morphismI simp: PiQ_Mx comp_def)
lemma product_qbs_canonical2:
assumes "⋀i. i ∈ I ⟹ f i ∈ Y →⇩Q X i"
"⋀i. i ∉ I ⟹ f i = (λy. undefined)"
"g ∈ Y →⇩Q (Π⇩Q i∈I. X i)"
"⋀i. i ∈ I ⟹ f i = (λx. x i) ∘ g"
and "y ∈ qbs_space Y"
shows "g y = (λi. f i y)"
proof(intro ext)
fix i
show "g y i = f i y"
proof(cases "i ∈ I")
case True
then show ?thesis
using assms(4)[of i] by simp
next
case False
with qbs_morphism_space[OF assms(3)] assms(2,3,5) show ?thesis
by(auto simp: PiQ_Mx PiQ_space)
qed
qed
lemma merge_qbs_morphism:
"merge I J ∈ (Π⇩Q i∈I. (M i)) ⨂⇩Q (Π⇩Q j∈J. (M j)) →⇩Q (Π⇩Q i∈I∪J. (M i))"
proof(rule qbs_morphismI)
fix α
assume h:"α ∈ qbs_Mx ((Π⇩Q i∈I. (M i)) ⨂⇩Q (Π⇩Q j∈J. (M j)))"
show "merge I J ∘ α ∈ qbs_Mx (Π⇩Q i∈I∪J. (M i))"
proof -
{
fix i
assume "i ∈ I ∪ J"
then consider "i ∈ I" | "i ∈ I ∧ i ∈ J" | "i ∉ I ∧ i ∈ J"
by auto
hence "(λr. (merge I J ∘ α) r i) ∈ qbs_Mx (M i)"
by cases (insert h, auto simp: merge_def split_beta' pair_qbs_Mx PiQ_Mx)
}
thus ?thesis
by(auto simp: PiQ_Mx) (auto simp: merge_def split_beta')
qed
qed
lemma ini_morphism[qbs]:
assumes "j ∈ I"
shows "(λx. (j,x)) ∈ X j →⇩Q (⨿⇩Q i∈I. X i)"
by(fastforce intro!: qbs_morphismI exI[where x="λr. j"] simp: coPiQ_Mx_def comp_def assms coPiQ_Mx)
lemma coPiQ_canonical1:
assumes "countable I"
and "⋀i. i ∈ I ⟹ f i ∈ X i →⇩Q Y"
shows "(λ(i,x). f i x) ∈ (⨿⇩Q i ∈I. X i) →⇩Q Y"
proof(rule qbs_morphismI)
fix α
assume "α ∈ qbs_Mx (coPiQ I X)"
then obtain β g where ha:
"⋀i. i ∈ range g ⟹ β i ∈ qbs_Mx (X i)" "α = (λr. (g r, β (g r) r))" and hg[measurable]:"g ∈ borel →⇩M count_space I"
by(fastforce simp: coPiQ_Mx_def coPiQ_Mx)
define f' where "f' ≡ (λi r. f i (β i r))"
have "range g ⊆ I"
using measurable_space[OF hg] by auto
hence 1:"(⋀i. i ∈ range g ⟹ f' i ∈ qbs_Mx Y)"
using qbs_morphism_Mx[OF assms(2) ha(1),simplified comp_def]
by(auto simp: f'_def)
have "(λ(i, x). f i x) ∘ α = (λr. f' (g r) r)"
by(auto simp: ha(2) f'_def)
also have "... ∈ qbs_Mx Y"
by(auto intro!: qbs_closed3_dest2'[OF assms(1) hg,of f',OF 1])
finally show "(λ(i, x). f i x) ∘ α ∈ qbs_Mx Y " .
qed
lemma coPiQ_canonical1':
assumes "countable I"
and "⋀i. i ∈ I ⟹ (λx. f (i,x)) ∈ X i →⇩Q Y"
shows "f ∈ (⨿⇩Q i ∈I. X i) →⇩Q Y"
using coPiQ_canonical1[where f="curry f"] assms by(auto simp: curry_def)
lemma None_qbs[qbs]: "None ∈ qbs_space (option_qbs X)"
by(simp add: option_qbs_space)
lemma Some_qbs[qbs]: "Some ∈ X →⇩Q option_qbs X"
proof -
have 1: "Some = (λx. case x of Inl y ⇒ Some y | Inr y ⇒ None) ∘ Inl"
by standard auto
show ?thesis
unfolding option_qbs_def
by(rule qbs_morphism_cong'[OF _ qbs_morphism_comp[OF Inl_qbs_morphism map_qbs_morphism_f]]) (simp add: 1)
qed
lemma case_option_qbs_morphism[qbs]: "case_option ∈ qbs_space (Y ⇒⇩Q (X ⇒⇩Q Y) ⇒⇩Q option_qbs X ⇒⇩Q Y)"
proof(rule curry_preserves_morphisms[OF arg_swap_morphism])
have "(λx y. case x of None ⇒ fst y | Some z ⇒ snd y z) = (λx y. case x of Inr _ ⇒ fst y | Inl z ⇒ snd y z) ∘ (λz. case z of Some x ⇒ Inl x | None ⇒ Inr ())"
by standard+ (simp add: option.case_eq_if)
also have "... ∈ option_qbs X →⇩Q Y ⨂⇩Q (X ⇒⇩Q Y) ⇒⇩Q Y"
unfolding option_qbs_def by(rule qbs_morphism_comp[OF map_qbs_morphism_inverse_f]) (auto simp: copair_qbs_space)
finally show " (λx y. case x of None ⇒ fst y | Some x ⇒ snd y x) ∈ option_qbs X →⇩Q Y ⨂⇩Q (X ⇒⇩Q Y) ⇒⇩Q Y" .
qed
lemma rec_option_qbs_morphism[qbs]: "rec_option ∈ qbs_space (Y ⇒⇩Q (X ⇒⇩Q Y) ⇒⇩Q option_qbs X ⇒⇩Q Y)"
proof -
have [simp]: "rec_option = case_option"
by standard+ (metis option.case_eq_if option.exhaust_sel option.simps(6) option.simps(7))
show ?thesis by simp
qed
lemma bind_option_qbs_morphism[qbs]: "(⤜) ∈ qbs_space (option_qbs X ⇒⇩Q (X ⇒⇩Q option_qbs Y) ⇒⇩Q option_qbs Y)"
by(simp add: Option.bind_def)
lemma Let_qbs_morphism[qbs]: "Let ∈ X ⇒⇩Q (X ⇒⇩Q Y) ⇒⇩Q Y"
proof -
have [simp]:"Let = (λx f. f x)" by standard+ auto
show ?thesis by simp
qed
end