Theory Terms_Positions

section ‹Preliminaries›
theory Terms_Positions
  imports Regular_Tree_Relations.Ground_Terms
begin

subsection ‹Additional operations on terms and positions›

subsubsection ‹Linearity›
fun linear_term :: "('f, 'v) term  bool" where
  "linear_term (Var _) = True" |
  "linear_term (Fun _ ts) = (is_partition (map vars_term ts)  (tset ts. linear_term t))"
abbreviation "linear_sys    (l, r)  . linear_term l  linear_term r"

subsubsection ‹Positions induced by contexts, by variables and by given subterms›

definition "possc C = {p | p t. p  poss Ct}"
definition "varposs s = {p | p. p  poss s  is_Var (s |_ p)}"
definition "poss_of_term u t = {p. p  poss t  t |_ p = u}"


subsubsection ‹Replacing functions symbols that aren't specified in the signature by variables›

definition "funas_rel  = ( (l, r)  . funas_term l  funas_term r)"

fun term_to_sig where
  "term_to_sig  v (Var x) = Var x"
| "term_to_sig  v (Fun f ts) =
    (if (f, length ts)   then Fun f (map (term_to_sig  v) ts) else Var v)"

fun ctxt_well_def_hole_path where
  "ctxt_well_def_hole_path  Hole  True"
| "ctxt_well_def_hole_path  (More f ss C ts)  (f, Suc (length ss + length ts))    ctxt_well_def_hole_path  C"

fun inv_const_ctxt where
  "inv_const_ctxt  v Hole = Hole"
| "inv_const_ctxt  v ((More f ss C ts)) 
              = (More f (map (term_to_sig  v) ss) (inv_const_ctxt  v C) (map (term_to_sig  v) ts))"

fun inv_const_ctxt' where
  "inv_const_ctxt'  v Hole = Var v"
| "inv_const_ctxt'  v ((More f ss C ts)) 
              = (if (f, Suc (length ss + length ts))   then Fun f (map (term_to_sig  v) ss @ inv_const_ctxt'  v C # map (term_to_sig  v) ts) else Var v)"


subsubsection ‹Replace term at a given position in contexts›

fun replace_term_context_at :: "('f, 'v) ctxt  pos  ('f, 'v) term  ('f, 'v) ctxt"
  (‹_[_  _]C [1000, 0] 1000) where
  "replace_term_context_at  p u = "
| "replace_term_context_at (More f ss C ts) (i # ps) u =
    (if i < length ss then More f (ss[i := (ss ! i)[ps  u]]) C ts
     else if i = length ss then More f ss (replace_term_context_at C ps u) ts
     else More f ss C (ts[(i - Suc (length ss)) := (ts ! (i - Suc (length ss)))[ps  u]]))"

abbreviation "constT c  Fun c []"

subsubsection ‹Multihole context closure of a term relation as inductive set›

definition all_ctxt_closed where
  "all_ctxt_closed F r  (f ts ss. (f, length ss)  F  length ts = length ss 
    (i. i < length ts  (ts ! i, ss ! i)  r) 
    ( i. i < length ts  funas_term (ts ! i)  funas_term (ss ! i)  F)  (Fun f ts, Fun f ss)  r) 
    ( x. (Var x, Var x)  r)"



subsection ‹Destruction and introduction of @{const all_ctxt_closed}

lemma all_ctxt_closedD: "all_ctxt_closed F r  (f,length ss)  F  length ts = length ss
    i. i < length ts  (ts ! i, ss ! i)  r 
    i. i < length ts  funas_term (ts ! i)  F 
    i. i < length ts  funas_term (ss ! i)  F 
   (Fun f ts, Fun f ss)  r"
  unfolding all_ctxt_closed_def by auto

lemma trans_ctxt_sig_imp_all_ctxt_closed: assumes tran: "trans r"
  and refl: " t. funas_term t  F  (t,t)  r"
  and ctxt: " C s t. funas_ctxt C  F  funas_term s  F  funas_term t  F  (s,t)  r  (C  s , C  t )  r"
  shows "all_ctxt_closed F r" unfolding all_ctxt_closed_def
proof (rule, intro allI impI)
  fix f ts ss
  assume f: "(f,length ss)  F" and
         l: "length ts = length ss" and
         steps: " i < length ts. (ts ! i, ss ! i)  r" and
         sig: " i < length ts. funas_term (ts ! i)   funas_term (ss ! i)  F"
  from sig have sig_ts: " t. t  set ts  funas_term t  F"  unfolding set_conv_nth by auto
  let ?p = "λ ss. (Fun f ts, Fun f ss)  r  funas_term (Fun f ss)  F"
  let ?r = "λ xsi ysi. (xsi, ysi)  r  funas_term ysi  F"
  have init: "?p ts" by (rule conjI[OF refl], insert f sig_ts l, auto)
  have "?p ss"
  proof (rule parallel_list_update[where p = ?p and r = ?r, OF _ HOL.refl init l[symmetric]])
    fix xs i y
    assume len: "length xs = length ts"
       and i: "i < length ts"
       and r: "?r (xs ! i) y"
       and p: "?p xs"
    let ?C = "More f (take i xs) Hole (drop (Suc i) xs)"
    have id1: "Fun f xs = ?C  xs ! i" using id_take_nth_drop[OF i[folded len]] by simp
    have id2: "Fun f (xs[i := y]) = ?C  y " using upd_conv_take_nth_drop[OF i[folded len]] by simp
    from p[unfolded id1] have C: "funas_ctxt ?C  F" and xi: "funas_term (xs ! i)  F" by auto
    from r have "funas_term y  F" "(xs ! i, y)  r" by auto
    with ctxt[OF C xi this] C have r: "(Fun f xs, Fun f (xs[i := y]))  r"
      and f: "funas_term (Fun f (xs[i := y]))  F" unfolding id1 id2 by auto
    from p r tran have "(Fun f ts, Fun f (xs[i := y]))  r" unfolding trans_def by auto
    with f
    show "?p (xs[i := y])"  by auto
  qed (insert sig steps, auto)
  then show "(Fun f ts, Fun f ss)  r" ..
qed (insert refl, auto)



subsection ‹Lemmas for @{const poss} and ordering of positions›

lemma subst_poss_mono: "poss s  poss (s  σ)"
  by (induct s) force+

lemma par_pos_prefix [simp]:
  "(i # p)  (i # q)  p  q"
  by (simp add: par_Cons_iff)

lemma pos_diff_itself [simp]: "p -p p = []"
  by (simp add: pos_diff_def)

lemma pos_les_eq_append_diff [simp]:
  "p p q  p @ (q -p p) = q"
  by (metis option.sel pos_diff_def position_less_eq_def remove_prefix_append)

lemma pos_diff_append_itself [simp]: "(p @ q) -p p = q"
  by (simp add: pos_diff_def remove_prefix_append)

lemma poss_pos_diffI:
  "p p q  q  poss s  q -p p  poss (s |_ p)"
  using poss_append_poss by fastforce

lemma less_eq_poss_append_itself [simp]: "p p (p @ q)"
  using position_less_eq_def by blast

lemma poss_ctxt_apply [simp]:
  "hole_pos C @ p  poss Cs  p  poss s"
  by (induct C) auto

lemma pos_replace_at_pres:
  "p  poss s  p  poss s[p  t]"
proof (induct p arbitrary: s)
  case (Cons i p)
  show ?case using Cons(1)[of "args s ! i"] Cons(2-)
    by (cases s) auto
qed auto

lemma par_pos_replace_pres:
  "p  poss s  p  q  p  poss s[q  t]"
proof (induct p arbitrary: s q)
  case (Cons i p)
  show ?case using Cons(1)[of "args s ! i" "tl q"] Cons(2-)
    by (cases s; cases q) (auto simp add: nth_list_update par_Cons_iff)
qed auto

lemma poss_of_termE [elim]:
  assumes "p  poss_of_term u s"
    and "p  poss s  s |_ p = u  P"
  shows "P" using assms unfolding poss_of_term_def
  by blast

lemma poss_of_term_Cons:
  "i # p  poss_of_term u (Fun f ts)  p  poss_of_term u (ts ! i)"
  unfolding poss_of_term_def by auto

lemma poss_of_term_const_ctxt_apply:
  assumes "p  poss_of_term (constT c) Cs"
  shows "p  (hole_pos C)  (hole_pos C) p p" using assms
proof (induct p arbitrary: C)
  case Nil then show ?case
    by (cases C) auto
next
  case (Cons i p) then show ?case
    by (cases C) (fastforce simp add: par_Cons_iff dest!: poss_of_term_Cons)+
qed


subsection ‹Lemmas for @{const subt_at} and @{const replace_term_at}

lemma subt_at_append_dist:
  "p @ q  poss s  s |_ (p @ q) = (s |_ p) |_ q"
proof (induct p arbitrary: s)
  case (Cons i p) then show ?case
    by (cases s) auto
qed auto

lemma ctxt_apply_term_subt_at_hole_pos [simp]:
  "Cs |_ (hole_pos C @ q) = s |_ q"
  by (induct C) auto

lemma subst_subt_at_dist:
  "p  poss s  s  σ |_ p = s |_ p  σ"
proof (induct p arbitrary: s)
  case (Cons i p) then show ?case
    by (cases s) auto
qed auto

lemma replace_term_at_subt_at_id [simp]: "s[p  (s |_ p)] = s"
proof (induct p arbitrary: s)
  case (Cons i p) then show ?case
    by (cases s) auto
qed auto


lemma replace_term_at_same_pos [simp]:
  "s[p  u][p  t] = s[p  t]"
  using position_less_refl replace_term_at_above by blast

― ‹Replacement at under substitution›
lemma subt_at_vars_term:
  "p  poss s  s |_ p = Var x  x  vars_term s"
  by (metis UnCI ctxt_at_pos_subt_at_id term.set_intros(3) vars_term_ctxt_apply)

lemma linear_term_varposs_subst_replace_term:
  "linear_term s  p  varposs s  p p q 
     (s  σ)[q  u] = s  (λ x. if Var x = s |_ p then (σ x)[q -p p  u] else (σ x))"
proof (induct q arbitrary: s p)
  case (Cons i q)
  show ?case using Cons(1)[of "args s ! i" "tl p"] Cons(2-)
    by (cases s) (auto simp: varposs_def nth_list_update term_subst_eq_conv
      is_partition_alt is_partition_alt_def disjoint_iff subt_at_vars_term intro!: nth_equalityI)
qed (auto simp: varposs_def)

― ‹Replacement at context parallel to the hole position›
lemma par_hole_pos_replace_term_context_at:
  "p  hole_pos C  Cs[p  u] = (C[p  u]C)s"
proof (induct p arbitrary: C)
  case (Cons i p)
  from Cons(2) obtain f ss D ts where [simp]: "C = More f ss D ts" by (cases C) auto 
  show ?case using Cons(1)[of D] Cons(2)
    by (auto simp: list_update_append nth_append_Cons minus_nat.simps(2) split: nat.splits)
qed auto

lemma par_pos_replace_term_at:
  "p  poss s  p  q  s[q  t] |_ p = s |_ p"
proof (induct p arbitrary: s q)
  case (Cons i p)
  show ?case using Cons(1)[of "args s ! i" "tl q"] Cons(2-)
    by (cases s; cases q) (auto, metis nth_list_update par_Cons_iff)
qed auto


lemma less_eq_subt_at_replace:
  "p  poss s  p p q  s[q  t] |_ p = (s |_ p)[q -p p  t]"
proof (induct p arbitrary: s q)
  case (Cons i p)
  show ?case using Cons(1)[of "args s ! i" "tl q"] Cons(2-)
    by (cases s; cases q) auto
qed auto


lemma greater_eq_subt_at_replace:
  "p  poss s  q p p  s[q  t] |_ p = t |_ (p -p q)"
proof (induct p arbitrary: s q)
  case (Cons i p)
  show ?case using Cons(1)[of "args s ! i" "tl q"] Cons(2-)
    by (cases s; cases q) auto
qed auto

lemma replace_subterm_at_itself [simp]:
  "s[p  (s |_ p)[q  t]] = s[p @ q  t]"
proof (induct p arbitrary: s)
  case (Cons i p)
  show ?case using Cons(1)[of "args s ! i"]
    by (cases s) auto
qed auto


lemma hole_pos_replace_term_at [simp]:
  "hole_pos C p p  Cs[p  u] = Cs[p -p hole_pos C  u]"
proof (induct C arbitrary: p)
  case (More f ss C ts) then show ?case
    by (cases p) auto
qed auto

lemma ctxt_of_pos_term_apply_replace_at_ident:
  assumes "p  poss s"
  shows "(ctxt_at_pos s p)t = s[p  t]"
  using assms
proof (induct p arbitrary: s)
  case (Cons i p)
  show ?case using Cons(1)[of "args s ! i"] Cons(2-)
    by (cases s) (auto simp: nth_append_Cons intro!: nth_equalityI)
qed auto

lemma ctxt_apply_term_replace_term_hole_pos [simp]:
  "Cs[hole_pos C @ q   u] = Cs[q   u]"
  by (simp add: pos_diff_def position_less_eq_def remove_prefix_append)

lemma ctxt_apply_subt_at_hole_pos [simp]: "Cs |_ hole_pos C = s"
  by (induct C) auto

lemma subt_at_imp_supteq':
  assumes "p  poss s" and "s|_p = t" shows "s  t" using assms
proof (induct p arbitrary: s)
  case (Cons i p)
  from Cons(2-) show ?case using Cons(1)[of "args s ! i"]
    by (cases s) force+
qed auto

lemma subt_at_imp_supteq:
  assumes "p  poss s" shows "s  s|_p"
proof -
 have "s|_p = s|_p" by auto
 with assms show ?thesis by (rule subt_at_imp_supteq')
qed


subsection @{const term_to_sig} invariants and distributions›

lemma fuans_term_term_to_sig [simp]: "funas_term (term_to_sig  v t)  "
  by (induct t) auto

lemma term_to_sig_id [simp]:
  "funas_term t    term_to_sig  v t = t"
  by (induct t) (auto simp add: UN_subset_iff map_idI)

lemma term_to_sig_subst_sig [simp]:
  "funas_term t    term_to_sig  v (t  σ) = t  (λ x.  term_to_sig  v (σ x))"
  by (induct t) auto

lemma funas_ctxt_ctxt_inv_const_ctxt_ind [simp]:
  "funas_ctxt C    inv_const_ctxt  v C = C"
  by (induct C) (auto simp add: UN_subset_iff intro!: nth_equalityI)

lemma term_to_sig_ctxt_apply [simp]:
  "ctxt_well_def_hole_path  C  term_to_sig  v Cs = (inv_const_ctxt  v C)term_to_sig  v s"
  by (induct C) auto

lemma term_to_sig_ctxt_apply' [simp]:
  "¬ ctxt_well_def_hole_path  C  term_to_sig  v Cs = inv_const_ctxt'  v C"
  by (induct C) auto

lemma funas_ctxt_ctxt_well_def_hole_path:
  "funas_ctxt C    ctxt_well_def_hole_path  C"
  by (induct C) auto


subsection ‹Misc›

lemma funas_term_subt_at:
  "(f, n)  funas_term t  ( p ts. p  poss t  t |_ p = Fun f ts  length ts = n)"
proof (induct t)
  case (Fun g ts) note IH = this
  show ?case
  proof (cases "g = f  length ts = n")
    case False
    then obtain i where i: "i < length ts" "(f, n)  funas_term (ts ! i)" using IH(2)
      using in_set_idx by force
    from IH(1)[OF nth_mem[OF this(1)] this(2)] show ?thesis using i(1)
      by (metis poss_Cons_poss subt_at.simps(2) term.sel(4))
  qed auto
qed simp

lemma finite_poss: "finite (poss s)"
proof (induct s)
  case (Fun f ts)
  have "poss (Fun f ts) = insert [] ( (set (map2 (λ i p. ((#) i) ` p) [0..< length ts] (map poss ts))))"
    by (auto simp: image_iff set_zip split: prod.splits)
  then show ?case using Fun
    by (auto simp del: poss.simps dest!: set_zip_rightD)
qed simp

lemma finite_varposs: "finite (varposs s)"
  by (intro finite_subset[of "varposs s" "poss s"]) (auto simp: varposs_def finite_poss)

lemma gound_linear [simp]: "ground t  linear_term t"
  by (induct t) (auto simp: is_partition_alt is_partition_alt_def)

declare ground_substI[intro, simp]
lemma ground_ctxt_substI:
  "( x. x  vars_ctxt C  ground (σ x))  ground_ctxt (C c σ)"
  by (induct C) auto


lemma funas_ctxt_subst_apply_ctxt:
  "funas_ctxt (C c σ) = funas_ctxt C  ( (funas_term ` σ ` vars_ctxt C))"
proof (induct C)
  case (More f ss C ts)
  then show ?case
    by (fastforce simp add: funas_term_subst)
qed simp

lemma varposs_Var[simp]:
  "varposs (Var x) = {[]}"
  by (auto simp: varposs_def)

lemma varposs_Fun[simp]:
  "varposs (Fun f ts) = { i # p| i p. i < length ts  p  varposs (ts ! i)}"
  by (auto simp: varposs_def)

lemma vars_term_varposs_iff:
  "x  vars_term s  ( p  varposs s. s |_ p = Var x)"
proof (induct s)
  case (Fun f ts)
  show ?case using Fun[OF nth_mem]
    by (force simp: in_set_conv_nth Bex_def)
qed auto

lemma vars_term_empty_ground:
  "vars_term s = {}  ground s"
  by (metis equals0D ground_substI subst_ident)

lemma ground_subst_apply: "ground t  t  σ = t"
  by (induct t) (auto intro: nth_equalityI)

lemma varposs_imp_poss:
  "p  varposs s  p  poss s" by (auto simp: varposs_def)

lemma varposs_empty_gound:
 "varposs s = {}  ground s"
  by (induct s) (fastforce simp: in_set_conv_nth)+

lemma funas_term_subterm_atI [intro]:
  "p  poss s  funas_term s    funas_term (s |_ p)  "
  by (metis ctxt_at_pos_subt_at_id funas_ctxt_apply le_sup_iff)

lemma varposs_ground_replace_at:
  "p  varposs s  ground u  varposs s[p  u] = varposs s - {p}"
proof (induct p arbitrary: s)
  case Nil then show ?case
    by (cases s) (auto simp: varposs_empty_gound)
next
  case (Cons i p)
  from Cons(2) obtain f ts where [simp]: "s = Fun f ts" by (cases s) auto
  from Cons(2) have var: "p  varposs (ts ! i)" by auto
  from Cons(1)[OF var Cons(3)] have "j < length ts  {j # q| q. q  varposs (ts[i := (ts ! i)[p  u]] ! j)} =
           {j # q |q. q  varposs (ts ! j)} - {i # p}" for j
    by (cases "j = i") (auto simp add: nth_list_update)
  then show ?case by auto blast
qed

lemma funas_term_replace_at_upper:
  "funas_term s[p  t]  funas_term s  funas_term t"
proof (induct p arbitrary: s)
  case (Cons i p)
  show ?case using Cons(1)[of "args s ! i"]
    by (cases s) (fastforce simp: in_set_conv_nth nth_list_update split!: if_splits)+
qed simp

lemma funas_term_replace_at_lower:
  "p  poss s  funas_term t  funas_term (s[p  t])"
proof (induct p arbitrary: s)
  case (Cons i p)
  show ?case using Cons(1)[of "args s ! i"] Cons(2-)
    by (cases s) (fastforce simp: in_set_conv_nth nth_list_update split!: if_splits)+
qed simp

lemma poss_of_term_possI [intro!]:
  "p  poss s  s |_ p = u  p  poss_of_term u s"
  unfolding poss_of_term_def by blast

lemma poss_of_term_replace_term_at:
  "p  poss s  p  poss_of_term u s[p  u]"
proof (induct p arbitrary: s)
  case (Cons i p) then show ?case
    by (cases s) (auto simp: poss_of_term_def)
qed auto

lemma constT_nfunas_term_poss_of_term_empty:
  "(c, 0)  funas_term t  poss_of_term (constT c) t = {}"
  unfolding poss_of_term_def
  using funas_term_subt_at[of c 0 t]
  using funas_term_subterm_atI[where ?ℱ ="funas_term t" and ?s = t, THEN subsetD]
  by auto

lemma poss_of_term_poss_emptyD:
  assumes "poss_of_term u s = {}"
  shows "p  poss s  s |_ p  u" using assms
  unfolding poss_of_term_def by blast

lemma possc_subt_at_ctxt_apply:
  "p  possc C  p  hole_pos C  Cs |_ p = Ct |_ p"
proof (induct p arbitrary: C)
  case (Cons i p)
  have [dest]: "length ss # p  possc (More f ss D ts)  p  possc D" for f ss D ts
    by (auto simp: possc_def)
  show ?case using Cons
    by (cases C) (auto simp: nth_append_Cons)
qed simp

end