Theory Category3.FunctorCategory
chapter FunctorCategory
theory FunctorCategory
imports ConcreteCategory BinaryFunctor
begin
text‹
The functor category ‹[A, B]› is the category whose objects are functors
from @{term A} to @{term B} and whose arrows correspond to natural transformations
between these functors.
›
section "Construction"
text‹
Since the arrows of a functor category cannot (in the context of the present development)
be directly identified with natural transformations, but rather only with natural
transformations that have been equipped with their domain and codomain functors,
and since there is no natural value to serve as @{term null},
we use the general-purpose construction given by @{locale concrete_category} to define
this category.
›
locale functor_category =
A: category A +
B: category B
for A :: "'a comp" (infixr ‹⋅⇩A› 55)
and B :: "'b comp" (infixr ‹⋅⇩B› 55)
begin
notation A.in_hom (‹«_ : _ →⇩A _»›)
notation B.in_hom (‹«_ : _ →⇩B _»›)
type_synonym ('aa, 'bb) arr = "('aa ⇒ 'bb, 'aa ⇒ 'bb) concrete_category.arr"
sublocale concrete_category ‹Collect (functor A B)›
‹λF G. Collect (natural_transformation A B F G)› ‹λF. F›
‹λF G H τ σ. vertical_composite.map A B σ τ›
using vcomp_assoc
apply (unfold_locales, simp_all)
proof -
fix F G H σ τ
assume F: "functor (⋅⇩A) (⋅⇩B) F"
assume G: "functor (⋅⇩A) (⋅⇩B) G"
assume H: "functor (⋅⇩A) (⋅⇩B) H"
assume σ: "natural_transformation (⋅⇩A) (⋅⇩B) F G σ"
assume τ: "natural_transformation (⋅⇩A) (⋅⇩B) G H τ"
interpret F: "functor" A B F using F by simp
interpret G: "functor" A B G using G by simp
interpret H: "functor" A B H using H by simp
interpret σ: natural_transformation A B F G σ
using σ by simp
interpret τ: natural_transformation A B G H τ
using τ by simp
interpret τσ: vertical_composite A B F G H σ τ
..
show "natural_transformation (⋅⇩A) (⋅⇩B) F H (vertical_composite.map (⋅⇩A) (⋅⇩B) σ τ)"
using τσ.map_def τσ.is_natural_transformation by simp
qed
lemma is_concrete_category:
shows "concrete_category (Collect (functor A B))
(λF G. Collect (natural_transformation A B F G)) (λF. F)
(λF G H τ σ. vertical_composite.map A B σ τ)"
..
abbreviation comp (infixr ‹⋅› 55)
where "comp ≡ COMP"
notation in_hom (‹«_ : _ → _»›)
lemma is_category:
shows "category comp"
..
lemma arrI [intro]:
assumes "f ≠ null" and "natural_transformation A B (Dom f) (Cod f) (Map f)"
shows "arr f"
using assms arr_char null_char
by (simp add: natural_transformation_def)
lemma arrE [elim]:
assumes "arr f"
and "f ≠ null ⟹ natural_transformation A B (Dom f) (Cod f) (Map f) ⟹ T"
shows T
using assms arr_char null_char by simp
lemma arr_MkArr [iff]:
shows "arr (MkArr F G τ) ⟷ natural_transformation A B F G τ"
using arr_char null_char arr_MkArr natural_transformation_def by fastforce
lemma ide_char [iff]:
shows "ide t ⟷ t ≠ null ∧ functor A B (Map t) ∧ Dom t = Map t ∧ Cod t = Map t"
using ide_char⇩C⇩C null_char by fastforce
end
section "Additional Properties"
text‹
In this section some additional facts are proved, which make it easier to
work with the @{term "functor_category"} locale.
›
context functor_category
begin
lemma Map_comp [simp]:
assumes "seq t' t" and "A.seq a' a"
shows "Map (t' ⋅ t) (a' ⋅⇩A a) = Map t' a' ⋅⇩B Map t a"
proof -
interpret t: natural_transformation A B ‹Dom t› ‹Cod t› ‹Map t›
using assms(1) arr_char seq_char by blast
interpret t': natural_transformation A B ‹Cod t› ‹Cod t'› ‹Map t'›
using assms(1) arr_char seq_char by force
interpret t'ot: vertical_composite A B ‹Dom t› ‹Cod t› ‹Cod t'› ‹Map t› ‹Map t'› ..
show ?thesis
using B.comp_assoc assms seq_char t'.preserves_comp_2 t'ot.map_simp_2 by auto
qed
lemma Map_comp':
assumes "seq t' t"
shows "Map (t' ⋅ t) = vertical_composite.map A B (Map t) (Map t')"
proof -
interpret t: natural_transformation A B ‹Dom t› ‹Cod t› ‹Map t›
using assms(1) arr_char seq_char by blast
interpret t': natural_transformation A B ‹Cod t› ‹Cod t'› ‹Map t'›
using assms(1) arr_char seq_char by force
interpret t'ot: vertical_composite A B ‹Dom t› ‹Cod t› ‹Cod t'› ‹Map t› ‹Map t'› ..
show ?thesis
using assms(1) seq_char t'ot.natural_transformation_axioms by simp
qed
lemma MkArr_eqI:
assumes "F = F'" and "G = G'" and "τ = τ'"
shows "MkArr F G τ = MkArr F' G' τ'"
using assms by simp
lemma iso_char [iff]:
shows "iso t ⟷ t ≠ null ∧ natural_isomorphism A B (Dom t) (Cod t) (Map t)"
proof
assume t: "iso t"
show "t ≠ null ∧ natural_isomorphism A B (Dom t) (Cod t) (Map t)"
proof
show "t ≠ null" using t arr_char iso_is_arr by auto
from t obtain t' where t': "inverse_arrows t t'" by blast
interpret τ: natural_transformation A B ‹Dom t› ‹Cod t› ‹Map t›
using t arr_char iso_is_arr by auto
interpret τ': natural_transformation A B ‹Cod t› ‹Dom t› ‹Map t'›
using t' arr_char dom_char seq_char
by (metis arrE ide_compE inverse_arrowsE)
interpret τ'oτ: vertical_composite A B ‹Dom t› ‹Cod t› ‹Dom t› ‹Map t› ‹Map t'› ..
interpret τoτ': vertical_composite A B ‹Cod t› ‹Dom t› ‹Cod t› ‹Map t'› ‹Map t› ..
show "natural_isomorphism A B (Dom t) (Cod t) (Map t)"
proof
fix a
assume a: "A.ide a"
show "B.iso (Map t a)"
proof
have 1: "τ'oτ.map = Dom t ∧ τoτ'.map = Cod t"
using t t'
by (metis (no_types, lifting) Map_dom concrete_category.Map_comp
concrete_category_axioms ide_compE inverse_arrowsE seq_char)
show "B.inverse_arrows (Map t a) (Map t' a)"
using a 1 τoτ'.map_simp_ide τ'oτ.map_simp_ide τ.F.preserves_ide τ.G.preserves_ide
by auto
qed
qed
qed
next
assume t: "t ≠ null ∧ natural_isomorphism A B (Dom t) (Cod t) (Map t)"
show "iso t"
proof
interpret τ: natural_isomorphism A B ‹Dom t› ‹Cod t› ‹Map t›
using t by auto
interpret τ': inverse_transformation A B ‹Dom t› ‹Cod t› ‹Map t› ..
have 1: "vertical_composite.map A B (Map t) τ'.map = Dom t ∧
vertical_composite.map A B τ'.map (Map t) = Cod t"
using τ.natural_isomorphism_axioms vertical_composite_inverse_iso
vertical_composite_iso_inverse
by blast
show "inverse_arrows t (MkArr (Cod t) (Dom t) (τ'.map))"
proof
show 2: "ide (MkArr (Cod t) (Dom t) τ'.map ⋅ t)"
using t 1
by (metis (no_types, lifting) MkArr_Map MkIde_Dom τ'.natural_transformation_axioms
τ.natural_transformation_axioms arrI arr_MkArr comp_MkArr ide_dom)
show "ide (t ⋅ MkArr (Cod t) (Dom t) τ'.map)"
using t 1 2
by (metis Dom.simps(1) Map.simps(1) τ.natural_transformation_axioms arrI
cod_char cod_comp comp_char ide_char' ide_compE)
qed
qed
qed
end
section "Evaluation Functor"
text‹
This section defines the evaluation map that applies an arrow of the functor
category ‹[A, B]› to an arrow of @{term A} to obtain an arrow of @{term B}
and shows that it is functorial.
›
locale evaluation_functor =
A: category A +
B: category B +
A_B: functor_category A B +
A_BxA: product_category A_B.comp A
for A :: "'a comp" (infixr ‹⋅⇩A› 55)
and B :: "'b comp" (infixr ‹⋅⇩B› 55)
begin
notation A_B.comp (infixr ‹⋅⇩[⇩A⇩,⇩B⇩]› 55)
notation A_BxA.comp (infixr ‹⋅⇩[⇩A⇩,⇩B⇩]⇩x⇩A› 55)
notation A_B.in_hom (‹«_ : _ →⇩[⇩A⇩,⇩B⇩] _»›)
notation A_BxA.in_hom (‹«_ : _ →⇩[⇩A⇩,⇩B⇩]⇩x⇩A _»›)
definition map
where "map Fg ≡ if A_BxA.arr Fg then A_B.Map (fst Fg) (snd Fg) else B.null"
lemma map_simp:
assumes "A_BxA.arr Fg"
shows "map Fg = A_B.Map (fst Fg) (snd Fg)"
using assms map_def by auto
lemma is_functor:
shows "functor A_BxA.comp B map"
proof
show "⋀Fg. ¬ A_BxA.arr Fg ⟹ map Fg = B.null"
using map_def by auto
fix Fg
assume Fg: "A_BxA.arr Fg"
let ?F = "fst Fg" and ?g = "snd Fg"
have F: "A_B.arr ?F" using Fg by auto
have g: "A.arr ?g" using Fg by auto
have DomF: "A_B.Dom ?F = A_B.Map (A_B.dom ?F)" using F by simp
have CodF: "A_B.Cod ?F = A_B.Map (A_B.cod ?F)" using F by simp
interpret F: natural_transformation A B ‹A_B.Dom ?F› ‹A_B.Cod ?F› ‹A_B.Map ?F›
using Fg A_B.arr_char [of ?F] by blast
show "B.arr (map Fg)" using Fg map_def by auto
show "B.dom (map Fg) = map (A_BxA.dom Fg)"
using g Fg map_def DomF
by (metis (no_types, lifting) A_BxA.arr_dom A_BxA.dom_simp F.preserves_dom
fst_conv snd_conv)
show "B.cod (map Fg) = map (A_BxA.cod Fg)"
using g Fg map_def CodF
by (metis (no_types, lifting) A_BxA.arr_cod A_BxA.cod_simp F.preserves_cod
fst_conv snd_conv)
next
fix Fg Fg'
assume 1: "A_BxA.seq Fg' Fg"
let ?F = "fst Fg" and ?g = "snd Fg"
let ?F' = "fst Fg'" and ?g' = "snd Fg'"
have F': "A_B.arr ?F'" using 1 A_BxA.seqE by blast
have CodF: "A_B.Cod ?F = A_B.Map (A_B.cod ?F)"
using 1 by (metis A_B.Map_cod A_B.seqE A_BxA.seqE⇩P⇩C)
have DomF': "A_B.Dom ?F' = A_B.Map (A_B.dom ?F')"
using F' by simp
have seq_F'F: "A_B.seq ?F' ?F" using 1 by blast
have seq_g'g: "A.seq ?g' ?g" using 1 by blast
interpret F: natural_transformation A B ‹A_B.Dom ?F› ‹A_B.Cod ?F› ‹A_B.Map ?F›
using 1 A_B.arr_char by blast
interpret F': natural_transformation A B ‹A_B.Cod ?F› ‹A_B.Cod ?F'› ‹A_B.Map ?F'›
using 1 A_B.arr_char seq_F'F CodF DomF' A_B.seqE
by (metis mem_Collect_eq)
interpret F'oF: vertical_composite A B ‹A_B.Dom ?F› ‹A_B.Cod ?F› ‹A_B.Cod ?F'›
‹A_B.Map ?F› ‹A_B.Map ?F'› ..
show "map (Fg' ⋅⇩[⇩A⇩,⇩B⇩]⇩x⇩A Fg) = map Fg' ⋅⇩B map Fg"
unfolding map_def
using 1 seq_F'F seq_g'g by auto
qed
end
sublocale evaluation_functor ⊆ "functor" A_BxA.comp B map
using is_functor by auto
sublocale evaluation_functor ⊆ binary_functor A_B.comp A B map ..
section "Currying"
text‹
This section defines the notion of currying of a natural transformation
between binary functors, to obtain a natural transformation between
functors into a functor category, along with the inverse operation of uncurrying.
We have only proved here what is needed to establish the results
in theory ‹Limit› about limits in functor categories and have not
attempted to fully develop the functoriality and naturality properties of
these notions.
›
locale currying =
A1: category A1 +
A2: category A2 +
B: category B
for A1 :: "'a1 comp" (infixr ‹⋅⇩A⇩1› 55)
and A2 :: "'a2 comp" (infixr ‹⋅⇩A⇩2› 55)
and B :: "'b comp" (infixr ‹⋅⇩B› 55)
begin
interpretation A1xA2: product_category A1 A2 ..
interpretation A2_B: functor_category A2 B ..
interpretation A2_BxA2: product_category A2_B.comp A2 ..
interpretation E: evaluation_functor A2 B ..
notation A1xA2.comp (infixr ‹⋅⇩A⇩1⇩x⇩A⇩2› 55)
notation A2_B.comp (infixr ‹⋅⇩[⇩A⇩2,⇩B⇩]› 55)
notation A2_BxA2.comp (infixr ‹⋅⇩[⇩A⇩2⇩,⇩B⇩]⇩x⇩A⇩2› 55)
notation A1xA2.in_hom (‹«_ : _ →⇩A⇩1⇩x⇩A⇩2 _»›)
notation A2_B.in_hom (‹«_ : _ →⇩[⇩A⇩2⇩,⇩B⇩] _»›)
notation A2_BxA2.in_hom (‹«_ : _ →⇩[⇩A⇩2⇩,⇩B⇩]⇩x⇩A⇩2 _»›)
text‹
A proper definition for @{term curry} requires that it be parametrized by
binary functors @{term F} and @{term G} that are the domain and codomain
of the natural transformations to which it is being applied.
Similar parameters are not needed in the case of @{term uncurry}.
›
definition curry :: "('a1 × 'a2 ⇒ 'b) ⇒ ('a1 × 'a2 ⇒ 'b) ⇒ ('a1 × 'a2 ⇒ 'b)
⇒ 'a1 ⇒ ('a2, 'b) A2_B.arr"
where "curry F G τ f1 = (if A1.arr f1 then
A2_B.MkArr (λf2. F (A1.dom f1, f2)) (λf2. G (A1.cod f1, f2))
(λf2. τ (f1, f2))
else A2_B.null)"
definition uncurry :: "('a1 ⇒ ('a2, 'b) A2_B.arr) ⇒ 'a1 × 'a2 ⇒ 'b"
where "uncurry τ f ≡ if A1xA2.arr f then E.map (τ (fst f), snd f) else B.null"
lemma curry_simp:
assumes "A1.arr f1"
shows "curry F G τ f1 = A2_B.MkArr (λf2. F (A1.dom f1, f2)) (λf2. G (A1.cod f1, f2))
(λf2. τ (f1, f2))"
using assms curry_def by auto
lemma uncurry_simp:
assumes "A1xA2.arr f"
shows "uncurry τ f = E.map (τ (fst f), snd f)"
using assms uncurry_def by auto
lemma curry_in_hom:
assumes f1: "A1.arr f1"
and "natural_transformation A1xA2.comp B F G τ"
shows "«curry F G τ f1 : curry F F F (A1.dom f1) →⇩[⇩A⇩2⇩,⇩B⇩] curry G G G (A1.cod f1)»"
proof -
interpret τ: natural_transformation A1xA2.comp B F G τ using assms by auto
show ?thesis
proof -
interpret F_dom_f1: "functor" A2 B ‹λf2. F (A1.dom f1, f2)›
using f1 τ.F.is_extensional apply (unfold_locales, simp_all)
by (metis A1.arr_dom A1.comp_arr_dom A1.dom_dom A1xA2.comp_simp A1xA2.seqI⇩P⇩C
τ.F.as_nat_trans.preserves_comp_2 fst_conv snd_conv)
interpret G_cod_f1: "functor" A2 B ‹λf2. G (A1.cod f1, f2)›
using f1 τ.G.is_extensional A1.arr_cod_iff_arr
apply (unfold_locales, simp_all)
by (metis A1.comp_arr_dom A1.dom_cod A1xA2.comp_simp A1xA2.seqI⇩P⇩C
τ.G.preserves_comp fst_conv snd_conv)
have "natural_transformation A2 B (λf2. F (A1.dom f1, f2)) (λf2. G (A1.cod f1, f2))
(λf2. τ (f1, f2))"
using f1 τ.is_extensional apply (unfold_locales, simp_all)
proof -
fix f2
assume f2: "A2.arr f2"
show "G (A1.cod f1, f2) ⋅⇩B τ (f1, A2.dom f2) = τ (f1, f2)"
using f1 f2 τ.preserves_comp_1 [of "(A1.cod f1, f2)" "(f1, A2.dom f2)"]
A1.comp_cod_arr A2.comp_arr_dom
by simp
show "τ (f1, A2.cod f2) ⋅⇩B F (A1.dom f1, f2) = τ (f1, f2)"
using f1 f2 τ.preserves_comp_2 [of "(f1, A2.cod f2)" "(A1.dom f1, f2)"]
A1.comp_arr_dom A2.comp_cod_arr
by simp
qed
thus ?thesis
using f1 curry_simp by auto
qed
qed
lemma curry_preserves_functors:
assumes "functor A1xA2.comp B F"
shows "functor A1 A2_B.comp (curry F F F)"
proof -
interpret F: "functor" A1xA2.comp B F using assms by auto
interpret F: binary_functor A1 A2 B F ..
show ?thesis
using curry_def F.fixing_arr_gives_natural_transformation_1
A2_B.comp_char F.preserves_comp_1 curry_simp A2_B.seq_char
apply unfold_locales by auto
qed
lemma curry_preserves_transformations:
assumes "natural_transformation A1xA2.comp B F G τ"
shows "natural_transformation A1 A2_B.comp (curry F F F) (curry G G G) (curry F G τ)"
proof -
interpret τ: natural_transformation A1xA2.comp B F G τ using assms by auto
interpret τ: binary_functor_transformation A1 A2 B F G τ ..
interpret curry_F: "functor" A1 A2_B.comp ‹curry F F F›
using curry_preserves_functors τ.F.functor_axioms by simp
interpret curry_G: "functor" A1 A2_B.comp ‹curry G G G›
using curry_preserves_functors τ.G.functor_axioms by simp
show ?thesis
proof
show "⋀f2. ¬ A1.arr f2 ⟹ curry F G τ f2 = A2_B.null"
using curry_def by simp
fix f1
assume f1: "A1.arr f1"
show "A2_B.dom (curry F G τ f1) = curry F F F (A1.dom f1)"
using assms f1 curry_in_hom by blast
show "A2_B.cod (curry F G τ f1) = curry G G G (A1.cod f1)"
using assms f1 curry_in_hom by blast
show "curry G G G f1 ⋅⇩[⇩A⇩2,⇩B⇩] curry F G τ (A1.dom f1) = curry F G τ f1"
proof -
interpret τ_dom_f1: natural_transformation A2 B ‹λf2. F (A1.dom f1, f2)›
‹λf2. G (A1.dom f1, f2)› ‹λf2. τ (A1.dom f1, f2)›
using assms f1 curry_in_hom A1.ide_dom τ.fixing_ide_gives_natural_transformation_1
by blast
interpret G_f1: natural_transformation A2 B
‹λf2. G (A1.dom f1, f2)› ‹λf2. G (A1.cod f1, f2)› ‹λf2. G (f1, f2)›
using f1 τ.G.fixing_arr_gives_natural_transformation_1 by simp
interpret G_f1oτ_dom_f1: vertical_composite A2 B
‹λf2. F (A1.dom f1, f2)› ‹λf2. G (A1.dom f1, f2)›
‹λf2. G (A1.cod f1, f2)›
‹λf2. τ (A1.dom f1, f2)› ‹λf2. G (f1, f2)› ..
have "curry G G G f1 ⋅⇩[⇩A⇩2,⇩B⇩] curry F G τ (A1.dom f1)
= A2_B.MkArr (λf2. F (A1.dom f1, f2)) (λf2. G (A1.cod f1, f2)) G_f1oτ_dom_f1.map"
proof -
have "A2_B.seq (curry G G G f1) (curry F G τ (A1.dom f1))"
using f1 curry_in_hom [of "A1.dom f1"] τ.natural_transformation_axioms by force
thus ?thesis
using f1 curry_simp A2_B.comp_char [of "curry G G G f1" "curry F G τ (A1.dom f1)"]
by simp
qed
also have "... = A2_B.MkArr (λf2. F (A1.dom f1, f2)) (λf2. G (A1.cod f1, f2))
(λf2. τ (f1, f2))"
proof (intro A2_B.MkArr_eqI)
show "(λf2. F (A1.dom f1, f2)) = (λf2. F (A1.dom f1, f2))" by simp
show "(λf2. G (A1.cod f1, f2)) = (λf2. G (A1.cod f1, f2))" by simp
show "G_f1oτ_dom_f1.map = (λf2. τ (f1, f2))"
proof
fix f2
have "¬A2.arr f2 ⟹ G_f1oτ_dom_f1.map f2 = (λf2. τ (f1, f2)) f2"
using f1 G_f1oτ_dom_f1.is_extensional τ.is_extensional by simp
moreover have "A2.arr f2 ⟹ G_f1oτ_dom_f1.map f2 = (λf2. τ (f1, f2)) f2"
proof -
interpret τ_f1: natural_transformation A2 B ‹λf2. F (A1.dom f1, f2)›
‹λf2. G (A1.cod f1, f2)› ‹λf2. τ (f1, f2)›
using assms f1 curry_in_hom [of f1] curry_simp by auto
fix f2
assume f2: "A2.arr f2"
show "G_f1oτ_dom_f1.map f2 = (λf2. τ (f1, f2)) f2"
using f1 f2 G_f1oτ_dom_f1.map_simp_2 B.comp_assoc τ.is_natural_1
by fastforce
qed
ultimately show "G_f1oτ_dom_f1.map f2 = (λf2. τ (f1, f2)) f2" by blast
qed
qed
also have "... = curry F G τ f1" using f1 curry_def by simp
finally show ?thesis by blast
qed
show "curry F G τ (A1.cod f1) ⋅⇩[⇩A⇩2,⇩B⇩] curry F F F f1 = curry F G τ f1"
proof -
interpret τ_cod_f1: natural_transformation A2 B ‹λf2. F (A1.cod f1, f2)›
‹λf2. G (A1.cod f1, f2)› ‹λf2. τ (A1.cod f1, f2)›
using assms f1 curry_in_hom A1.ide_cod τ.fixing_ide_gives_natural_transformation_1
by blast
interpret F_f1: natural_transformation A2 B
‹λf2. F (A1.dom f1, f2)› ‹λf2. F (A1.cod f1, f2)› ‹λf2. F (f1, f2)›
using f1 τ.F.fixing_arr_gives_natural_transformation_1 by simp
interpret τ_cod_f1oF_f1: vertical_composite A2 B
‹λf2. F (A1.dom f1, f2)› ‹λf2. F (A1.cod f1, f2)›
‹λf2. G (A1.cod f1, f2)›
‹λf2. F (f1, f2)› ‹λf2. τ (A1.cod f1, f2)› ..
have "curry F G τ (A1.cod f1) ⋅⇩[⇩A⇩2,⇩B⇩] curry F F F f1
= A2_B.MkArr (λf2. F (A1.dom f1, f2)) (λf2. G (A1.cod f1, f2)) τ_cod_f1oF_f1.map"
proof -
have
"curry F F F f1 =
A2_B.MkArr (λf2. F (A1.dom f1, f2)) (λf2. F (A1.cod f1, f2))
(λf2. F (f1, f2)) ∧
«curry F F F f1 : curry F F F (A1.dom f1) →⇩[⇩A⇩2⇩,⇩B⇩] curry F F F (A1.cod f1)»"
using f1 curry_F.preserves_hom curry_simp by blast
moreover have
"curry F G τ (A1.dom f1) =
A2_B.MkArr (λf2. F (A1.dom f1, f2)) (λf2. G (A1.dom f1, f2))
(λf2. τ (A1.dom f1, f2)) ∧
«curry F G τ (A1.cod f1) :
curry F F F (A1.cod f1) →⇩[⇩A⇩2⇩,⇩B⇩] curry G G G (A1.cod f1)»"
using assms f1 curry_in_hom [of "A1.cod f1"] curry_def A1.arr_cod_iff_arr by simp
ultimately show ?thesis
using f1 curry_def by fastforce
qed
also have "... = A2_B.MkArr (λf2. F (A1.dom f1, f2)) (λf2. G (A1.cod f1, f2))
(λf2. τ (f1, f2))"
proof (intro A2_B.MkArr_eqI)
show "(λf2. F (A1.dom f1, f2)) = (λf2. F (A1.dom f1, f2))" by simp
show "(λf2. G (A1.cod f1, f2)) = (λf2. G (A1.cod f1, f2))" by simp
show "τ_cod_f1oF_f1.map = (λf2. τ (f1, f2))"
proof
fix f2
have "¬A2.arr f2 ⟹ τ_cod_f1oF_f1.map f2 = (λf2. τ (f1, f2)) f2"
using f1 by (simp add: τ.is_extensional τ_cod_f1oF_f1.is_extensional)
moreover have "A2.arr f2 ⟹ τ_cod_f1oF_f1.map f2 = (λf2. τ (f1, f2)) f2"
proof -
interpret τ_f1: natural_transformation A2 B ‹λf2. F (A1.dom f1, f2)›
‹λf2. G (A1.cod f1, f2)› ‹λf2. τ (f1, f2)›
using assms f1 curry_in_hom [of f1] curry_simp by auto
fix f2
assume f2: "A2.arr f2"
show "τ_cod_f1oF_f1.map f2 = (λf2. τ (f1, f2)) f2"
using f1 f2 τ_cod_f1oF_f1.map_simp_1 B.comp_assoc τ.is_natural_2
by fastforce
qed
ultimately show "τ_cod_f1oF_f1.map f2 = (λf2. τ (f1, f2)) f2" by blast
qed
qed
also have "... = curry F G τ f1" using f1 curry_def by simp
finally show ?thesis by blast
qed
qed
qed
lemma uncurry_preserves_functors:
assumes "functor A1 A2_B.comp F"
shows "functor A1xA2.comp B (uncurry F)"
proof -
interpret F: "functor" A1 A2_B.comp F using assms by auto
show ?thesis
using uncurry_def
apply (unfold_locales)
apply auto[4]
proof -
fix f g :: "'a1 * 'a2"
let ?f1 = "fst f"
let ?f2 = "snd f"
let ?g1 = "fst g"
let ?g2 = "snd g"
assume fg: "A1xA2.seq g f"
have f: "A1xA2.arr f" using fg A1xA2.seqE by blast
have f1: "A1.arr ?f1" using f by auto
have f2: "A2.arr ?f2" using f by auto
have g: "«g : A1xA2.cod f →⇩A⇩1⇩x⇩A⇩2 A1xA2.cod g»"
using fg A1xA2.dom_char A1xA2.cod_char
by (elim A1xA2.seqE, intro A1xA2.in_homI, auto)
let ?g1 = "fst g"
let ?g2 = "snd g"
have g1: "«?g1 : A1.cod ?f1 →⇩A⇩1 A1.cod ?g1»"
using f g by (intro A1.in_homI, auto)
have g2: "«?g2 : A2.cod ?f2 →⇩A⇩2 A2.cod ?g2»"
using f g by (intro A2.in_homI, auto)
interpret Ff1: natural_transformation A2 B ‹A2_B.Dom (F ?f1)› ‹A2_B.Cod (F ?f1)›
‹A2_B.Map (F ?f1)›
using f A2_B.arr_char [of "F ?f1"] by auto
interpret Fg1: natural_transformation A2 B ‹A2_B.Cod (F ?f1)› ‹A2_B.Cod (F ?g1)›
‹A2_B.Map (F ?g1)›
using f1 g1 A2_B.arr_char F.preserves_arr
A2_B.Map_dom [of "F ?g1"] A2_B.Map_cod [of "F ?f1"]
by fastforce
interpret Fg1oFf1: vertical_composite A2 B
‹A2_B.Dom (F ?f1)› ‹A2_B.Cod (F ?f1)› ‹A2_B.Cod (F ?g1)›
‹A2_B.Map (F ?f1)› ‹A2_B.Map (F ?g1)› ..
show "uncurry F (g ⋅⇩A⇩1⇩x⇩A⇩2 f) = uncurry F g ⋅⇩B uncurry F f"
using f1 g1 g2 g2 f g fg E.map_simp uncurry_def by auto
qed
qed
lemma uncurry_preserves_transformations:
assumes "natural_transformation A1 A2_B.comp F G τ"
shows "natural_transformation A1xA2.comp B (uncurry F) (uncurry G) (uncurry τ)"
proof -
interpret τ: natural_transformation A1 A2_B.comp F G τ using assms by auto
interpret "functor" A1xA2.comp B ‹uncurry F›
using τ.F.functor_axioms uncurry_preserves_functors by blast
interpret "functor" A1xA2.comp B ‹uncurry G›
using τ.G.functor_axioms uncurry_preserves_functors by blast
show ?thesis
proof
fix f
show "¬ A1xA2.arr f ⟹ uncurry τ f = B.null"
using uncurry_def by auto
assume f: "A1xA2.arr f"
let ?f1 = "fst f"
let ?f2 = "snd f"
show "B.dom (uncurry τ f) = uncurry F (A1xA2.dom f)"
using f uncurry_def by simp
show "B.cod (uncurry τ f) = uncurry G (A1xA2.cod f)"
using f uncurry_def by simp
show "uncurry G f ⋅⇩B uncurry τ (A1xA2.dom f) = uncurry τ f"
using f uncurry_def τ.is_natural_1 A2_BxA2.seq_char A2.comp_arr_dom
E.preserves_comp [of "(G (fst f), snd f)" "(τ (A1.dom (fst f)), A2.dom (snd f))"]
by auto
show "uncurry τ (A1xA2.cod f) ⋅⇩B uncurry F f = uncurry τ f"
proof -
have 1: "A1.arr ?f1 ∧ A1.arr (fst (A1.cod ?f1, A2.cod ?f2)) ∧
A1.cod ?f1 = A1.dom (fst (A1.cod ?f1, A2.cod ?f2)) ∧
A2.seq (snd (A1.cod ?f1, A2.cod ?f2)) ?f2"
using f A1.arr_cod_iff_arr A2.arr_cod_iff_arr by auto
hence 2:
"?f2 = A2 (snd (τ (fst (A1xA2.cod f)), snd (A1xA2.cod f))) (snd (F ?f1, ?f2))"
using f A2.comp_cod_arr by simp
have "A2_B.arr (τ ?f1)" using 1 by force
thus ?thesis
unfolding uncurry_def E.map_def
using f 1 2
apply simp
by (metis (no_types, lifting) A2_B.Map_comp ‹A2_B.arr (τ (fst f))› τ.is_natural_2)
qed
qed
qed
lemma uncurry_curry:
assumes "natural_transformation A1xA2.comp B F G τ"
shows "uncurry (curry F G τ) = τ"
proof
interpret τ: natural_transformation A1xA2.comp B F G τ using assms by auto
interpret curry_τ: natural_transformation A1 A2_B.comp ‹curry F F F› ‹curry G G G›
‹curry F G τ›
using assms curry_preserves_transformations by auto
fix f
have "¬A1xA2.arr f ⟹ uncurry (curry F G τ) f = τ f"
using curry_def uncurry_def τ.is_extensional by auto
moreover have "A1xA2.arr f ⟹ uncurry (curry F G τ) f = τ f"
proof -
assume f: "A1xA2.arr f"
have 1: "A2_B.Map (curry F G τ (fst f)) (snd f) = τ (fst f, snd f)"
using f A1xA2.arr_char curry_def by simp
thus "uncurry (curry F G τ) f = τ f"
unfolding uncurry_def E.map_def
using f 1 A1xA2.arr_char [of f] by simp
qed
ultimately show "uncurry (curry F G τ) f = τ f" by blast
qed
lemma curry_uncurry:
assumes "functor A1 A2_B.comp F" and "functor A1 A2_B.comp G"
and "natural_transformation A1 A2_B.comp F G τ"
shows "curry (uncurry F) (uncurry G) (uncurry τ) = τ"
proof
interpret F: "functor" A1 A2_B.comp F using assms(1) by auto
interpret G: "functor" A1 A2_B.comp G using assms(2) by auto
interpret τ: natural_transformation A1 A2_B.comp F G τ using assms(3) by auto
interpret uncurry_F: "functor" A1xA2.comp B ‹uncurry F›
using F.functor_axioms uncurry_preserves_functors by auto
interpret uncurry_G: "functor" A1xA2.comp B ‹uncurry G›
using G.functor_axioms uncurry_preserves_functors by auto
fix f1
have "¬A1.arr f1 ⟹ curry (uncurry F) (uncurry G) (uncurry τ) f1 = τ f1"
using curry_def uncurry_def τ.is_extensional by simp
moreover have "A1.arr f1 ⟹ curry (uncurry F) (uncurry G) (uncurry τ) f1 = τ f1"
proof -
assume f1: "A1.arr f1"
interpret uncurry_τ:
natural_transformation A1xA2.comp B ‹uncurry F› ‹uncurry G› ‹uncurry τ›
using τ.natural_transformation_axioms uncurry_preserves_transformations [of F G τ]
by simp
have "curry (uncurry F) (uncurry G) (uncurry τ) f1 =
A2_B.MkArr (λf2. uncurry F (A1.dom f1, f2)) (λf2. uncurry G (A1.cod f1, f2))
(λf2. uncurry τ (f1, f2))"
using f1 curry_def by simp
also have "... = A2_B.MkArr (λf2. uncurry F (A1.dom f1, f2))
(λf2. uncurry G (A1.cod f1, f2))
(λf2. E.map (τ f1, f2))"
proof -
have "(λf2. uncurry τ (f1, f2)) = (λf2. E.map (τ f1, f2))"
using f1 uncurry_def E.is_extensional by auto
thus ?thesis by simp
qed
also have "... = τ f1"
proof -
have "A2_B.Dom (τ f1) = (λf2. uncurry F (A1.dom f1, f2))"
proof -
have "A2_B.Dom (τ f1) = A2_B.Map (A2_B.dom (τ f1))"
using f1 A2_B.ide_char A2_B.Map_dom A2_B.dom_char by auto
also have "... = A2_B.Map (F (A1.dom f1))"
using f1 by simp
also have "... = (λf2. uncurry F (A1.dom f1, f2))"
proof
fix f2
interpret F_dom_f1: "functor" A2 B ‹A2_B.Map (F (A1.dom f1))›
using f1 A2_B.ide_char F.preserves_ide by simp
show "A2_B.Map (F (A1.dom f1)) f2 = uncurry F (A1.dom f1, f2)"
using f1 uncurry_def E.map_simp F_dom_f1.is_extensional by auto
qed
finally show ?thesis by auto
qed
moreover have "A2_B.Cod (τ f1) = (λf2. uncurry G (A1.cod f1, f2))"
proof -
have "A2_B.Cod (τ f1) = A2_B.Map (A2_B.cod (τ f1))"
using f1 A2_B.ide_char A2_B.Map_cod A2_B.cod_char by auto
also have "... = A2_B.Map (G (A1.cod f1))"
using f1 by simp
also have "... = (λf2. uncurry G (A1.cod f1, f2))"
proof
fix f2
interpret G_cod_f1: "functor" A2 B ‹A2_B.Map (G (A1.cod f1))›
using f1 A2_B.ide_char G.preserves_ide by simp
show "A2_B.Map (G (A1.cod f1)) f2 = uncurry G (A1.cod f1, f2)"
using f1 uncurry_def E.map_simp G_cod_f1.is_extensional by auto
qed
finally show ?thesis by auto
qed
moreover have "A2_B.Map (τ f1) = (λf2. E.map (τ f1, f2))"
proof
fix f2
have "¬A2.arr f2 ⟹ A2_B.Map (τ f1) f2 = (λf2. E.map (τ f1, f2)) f2"
using f1 A2_B.arrE τ.preserves_reflects_arr natural_transformation.is_extensional
by (metis (no_types, lifting) E.fixing_arr_gives_natural_transformation_1)
moreover have "A2.arr f2 ⟹ A2_B.Map (τ f1) f2 = (λf2. E.map (τ f1, f2)) f2"
using f1 E.map_simp by fastforce
ultimately show "A2_B.Map (τ f1) f2 = (λf2. E.map (τ f1, f2)) f2" by blast
qed
ultimately show ?thesis
using f1 A2_B.MkArr_Map τ.preserves_reflects_arr by metis
qed
finally show ?thesis by auto
qed
ultimately show "curry (uncurry F) (uncurry G) (uncurry τ) f1 = τ f1" by blast
qed
end
locale curried_functor =
currying A1 A2 B +
A1xA2: product_category A1 A2 +
A2_B: functor_category A2 B +
F: binary_functor A1 A2 B F
for A1 :: "'a1 comp" (infixr ‹⋅⇩A⇩1› 55)
and A2 :: "'a2 comp" (infixr ‹⋅⇩A⇩2› 55)
and B :: "'b comp" (infixr ‹⋅⇩B› 55)
and F :: "'a1 * 'a2 ⇒ 'b"
begin
notation A1xA2.comp (infixr ‹⋅⇩A⇩1⇩x⇩A⇩2› 55)
notation A2_B.comp (infixr ‹⋅⇩[⇩A⇩2,⇩B⇩]› 55)
notation A1xA2.in_hom (‹«_ : _ →⇩A⇩1⇩x⇩A⇩2 _»›)
notation A2_B.in_hom (‹«_ : _ →⇩[⇩A⇩2⇩,⇩B⇩] _»›)
definition map
where "map ≡ curry F F F"
lemma map_simp [simp]:
assumes "A1.arr f1"
shows "map f1 =
A2_B.MkArr (λf2. F (A1.dom f1, f2)) (λf2. F (A1.cod f1, f2)) (λf2. F (f1, f2))"
using assms map_def curry_simp by auto
lemma is_functor:
shows "functor A1 A2_B.comp map"
using F.functor_axioms map_def curry_preserves_functors by simp
end
sublocale curried_functor ⊆ "functor" A1 A2_B.comp map
using is_functor by auto
locale curried_functor' =
A1: category A1 +
A2: category A2 +
A1xA2: product_category A1 A2 +
currying A2 A1 B +
F: binary_functor A1 A2 B F +
A1_B: functor_category A1 B
for A1 :: "'a1 comp" (infixr ‹⋅⇩A⇩1› 55)
and A2 :: "'a2 comp" (infixr ‹⋅⇩A⇩2› 55)
and B :: "'b comp" (infixr ‹⋅⇩B› 55)
and F :: "'a1 * 'a2 ⇒ 'b"
begin
notation A1xA2.comp (infixr ‹⋅⇩A⇩1⇩x⇩A⇩2› 55)
notation A1_B.comp (infixr ‹⋅⇩[⇩A⇩1,⇩B⇩]› 55)
notation A1xA2.in_hom (‹«_ : _ →⇩A⇩1⇩x⇩A⇩2 _»›)
notation A1_B.in_hom (‹«_ : _ →⇩[⇩A⇩1⇩,⇩B⇩] _»›)
definition map
where "map ≡ curry F.sym F.sym F.sym"
lemma map_simp [simp]:
assumes "A2.arr f2"
shows "map f2 =
A1_B.MkArr (λf1. F (f1, A2.dom f2)) (λf1. F (f1, A2.cod f2)) (λf1. F (f1, f2))"
using assms map_def curry_simp by simp
lemma is_functor:
shows "functor A2 A1_B.comp map"
proof -
interpret A2xA1: product_category A2 A1 ..
interpret F': binary_functor A2 A1 B F.sym
using F.sym_is_binary_functor by simp
have "functor A2xA1.comp B F.sym" ..
thus ?thesis using map_def curry_preserves_functors by simp
qed
end
sublocale curried_functor' ⊆ "functor" A2 A1_B.comp map
using is_functor by auto
end