Theory Category3.BinaryFunctor
chapter BinaryFunctor
theory BinaryFunctor
imports ProductCategory NaturalTransformation
begin
text‹
This theory develops various properties of binary functors, which are functors
defined on product categories.
›
locale binary_functor =
A1: category A1 +
A2: category A2 +
B: category B +
A1xA2: product_category A1 A2 +
"functor" A1xA2.comp B F
for A1 :: "'a1 comp" (infixr ‹⋅⇩A⇩1› 55)
and A2 :: "'a2 comp" (infixr ‹⋅⇩A⇩2› 55)
and B :: "'b comp" (infixr ‹⋅⇩B› 55)
and F :: "'a1 * 'a2 ⇒ 'b"
begin
notation A1.in_hom (‹«_ : _ →⇩A⇩1 _»›)
notation A2.in_hom (‹«_ : _ →⇩A⇩2 _»›)
end
text‹
A product functor is a binary functor obtained by placing two functors in parallel.
›
locale product_functor =
A1: category A1 +
A2: category A2 +
B1: category B1 +
B2: category B2 +
F1: "functor" A1 B1 F1 +
F2: "functor" A2 B2 F2 +
A1xA2: product_category A1 A2 +
B1xB2: product_category B1 B2
for A1 :: "'a1 comp" (infixr ‹⋅⇩A⇩1› 55)
and A2 :: "'a2 comp" (infixr ‹⋅⇩A⇩2› 55)
and B1 :: "'b1 comp" (infixr ‹⋅⇩B⇩1› 55)
and B2 :: "'b2 comp" (infixr ‹⋅⇩B⇩2› 55)
and F1 :: "'a1 ⇒ 'b1"
and F2 :: "'a2 ⇒ 'b2"
begin
notation A1xA2.comp (infixr ‹⋅⇩A⇩1⇩x⇩A⇩2› 55)
notation B1xB2.comp (infixr ‹⋅⇩B⇩1⇩x⇩B⇩2› 55)
notation A1.in_hom (‹«_ : _ →⇩A⇩1 _»›)
notation A2.in_hom (‹«_ : _ →⇩A⇩2 _»›)
notation B1.in_hom (‹«_ : _ →⇩B⇩1 _»›)
notation B2.in_hom (‹«_ : _ →⇩B⇩2 _»›)
notation A1xA2.in_hom (‹«_ : _ →⇩A⇩1⇩x⇩A⇩2 _»›)
notation B1xB2.in_hom (‹«_ : _ →⇩B⇩1⇩x⇩B⇩2 _»›)
definition map
where "map f = (if A1.arr (fst f) ∧ A2.arr (snd f)
then (F1 (fst f), F2 (snd f)) else (F1 A1.null, F2 A2.null))"
lemma map_simp [simp]:
assumes "A1xA2.arr f"
shows "map f = (F1 (fst f), F2 (snd f))"
using assms map_def by simp
lemma is_functor:
shows "functor A1xA2.comp B1xB2.comp map"
using B1xB2.dom_char B1xB2.cod_char F1.is_extensional F2.is_extensional
apply (unfold_locales)
using map_def A1.arr_dom_iff_arr A1.arr_cod_iff_arr A2.arr_dom_iff_arr A2.arr_cod_iff_arr
apply auto[4]
using A1xA2.seqE map_simp by fastforce
end
sublocale product_functor ⊆ "functor" A1xA2.comp B1xB2.comp map
using is_functor by auto
sublocale product_functor ⊆ binary_functor A1 A2 B1xB2.comp map ..
text‹
The following locale is concerned with a binary functor from a category to itself.
It defines related functors that are useful when considering monoidal structure on a
category.
›
locale binary_endofunctor =
C: category C +
CC: product_category C C +
CCC: product_category C CC.comp +
binary_functor C C C T
for C :: "'a comp" (infixr ‹⋅› 55)
and T :: "'a * 'a ⇒ 'a"
begin
definition ToTC
where "ToTC f ≡ if CCC.arr f then T (T (fst f, fst (snd f)), snd (snd f)) else C.null"
lemma functor_ToTC:
shows "functor CCC.comp C ToTC"
using ToTC_def apply unfold_locales
apply auto[4]
proof -
fix f g
assume gf: "CCC.seq g f"
show "ToTC (CCC.comp g f) = ToTC g ⋅ ToTC f"
using gf unfolding CCC.seq_char CC.seq_char ToTC_def
apply auto
by (metis CC.comp_simp CC.seqI⇩P⇩C fst_conv preserves_comp preserves_seq snd_conv)
qed
lemma ToTC_simp [simp]:
assumes "C.arr f" and "C.arr g" and "C.arr h"
shows "ToTC (f, g, h) = T (T (f, g), h)"
using assms ToTC_def CCC.arr_char by simp
definition ToCT
where "ToCT f ≡ if CCC.arr f then T (fst f, T (fst (snd f), snd (snd f))) else C.null"
lemma functor_ToCT:
shows "functor CCC.comp C ToCT"
using ToCT_def apply unfold_locales
apply auto[4]
proof -
fix f g
assume gf: "CCC.seq g f"
show "ToCT (CCC.comp g f) = ToCT g ⋅ ToCT f"
using gf unfolding CCC.seq_char CC.seq_char ToCT_def
apply auto
by (metis CC.comp_simp CC.seq_char as_nat_trans.preserves_comp_2 fst_conv
preserves_reflects_arr snd_conv)
qed
lemma ToCT_simp [simp]:
assumes "C.arr f" and "C.arr g" and "C.arr h"
shows "ToCT (f, g, h) = T (f, T (g, h))"
using assms ToCT_def CCC.arr_char by simp
end
text‹
A symmetry functor is a binary functor that exchanges its two arguments.
›
locale symmetry_functor =
A1: category A1 +
A2: category A2 +
A1xA2: product_category A1 A2 +
A2xA1: product_category A2 A1
for A1 :: "'a1 comp" (infixr ‹⋅⇩A⇩1› 55)
and A2 :: "'a2 comp" (infixr ‹⋅⇩A⇩2› 55)
begin
notation A1xA2.comp (infixr ‹⋅⇩A⇩1⇩x⇩A⇩2› 55)
notation A2xA1.comp (infixr ‹⋅⇩A⇩2⇩x⇩A⇩1› 55)
notation A1xA2.in_hom (‹«_ : _ →⇩A⇩1⇩x⇩A⇩2 _»›)
notation A2xA1.in_hom (‹«_ : _ →⇩A⇩2⇩x⇩A⇩1 _»›)
definition map :: "'a1 * 'a2 ⇒ 'a2 * 'a1"
where "map f = (if A1xA2.arr f then (snd f, fst f) else A2xA1.null)"
lemma map_simp [simp]:
assumes "A1xA2.arr f"
shows "map f = (snd f, fst f)"
using assms map_def by meson
lemma is_functor:
shows "functor A1xA2.comp A2xA1.comp map"
using map_def A1.arr_dom_iff_arr A1.arr_cod_iff_arr A2.arr_dom_iff_arr A2.arr_cod_iff_arr
apply (unfold_locales)
apply auto[4]
by force
end
sublocale symmetry_functor ⊆ "functor" A1xA2.comp A2xA1.comp map
using is_functor by auto
sublocale symmetry_functor ⊆ binary_functor A1 A2 A2xA1.comp map ..
context binary_functor
begin
abbreviation sym
where "sym ≡ (λf. F (snd f, fst f))"
lemma sym_is_binary_functor:
shows "binary_functor A2 A1 B sym"
proof -
interpret A2xA1: product_category A2 A1 ..
interpret S: symmetry_functor A2 A1 ..
interpret SF: composite_functor A2xA1.comp A1xA2.comp B S.map F ..
have "binary_functor A2 A1 B (F o S.map)" ..
moreover have "F o S.map = (λf. F (snd f, fst f))"
using is_extensional SF.is_extensional S.map_def by fastforce
ultimately show ?thesis using sym_def by auto
qed
text‹
Fixing one or the other argument of a binary functor to be an identity
yields a functor of the other argument.
›
lemma fixing_ide_gives_functor_1:
assumes "A1.ide a1"
shows "functor A2 B (λf2. F (a1, f2))"
using assms
apply unfold_locales
using is_extensional
apply auto[4]
by (metis A1.ideD(1) A1.comp_ide_self A1xA2.comp_simp A1xA2.seq_char fst_conv
as_nat_trans.preserves_comp_2 snd_conv)
lemma fixing_ide_gives_functor_2:
assumes "A2.ide a2"
shows "functor A1 B (λf1. F (f1, a2))"
using assms
apply (unfold_locales)
using is_extensional
apply auto[4]
by (metis A1xA2.comp_simp A1xA2.seq_char A2.ideD(1) A2.comp_ide_self fst_conv
as_nat_trans.preserves_comp_2 snd_conv)
text‹
Fixing one or the other argument of a binary functor to be an arrow
yields a natural transformation.
›
lemma fixing_arr_gives_natural_transformation_1:
assumes "A1.arr f1"
shows "natural_transformation A2 B (λf2. F (A1.dom f1, f2)) (λf2. F (A1.cod f1, f2))
(λf2. F (f1, f2))"
proof -
let ?Fdom = "λf2. F (A1.dom f1, f2)"
interpret Fdom: "functor" A2 B ?Fdom using assms fixing_ide_gives_functor_1 by auto
let ?Fcod = "λf2. F (A1.cod f1, f2)"
interpret Fcod: "functor" A2 B ?Fcod using assms fixing_ide_gives_functor_1 by auto
let ?τ = "λf2. F (f1, f2)"
show "natural_transformation A2 B ?Fdom ?Fcod ?τ"
using assms
apply unfold_locales
using is_extensional
apply auto[3]
using A1xA2.arr_char preserves_comp A1.comp_cod_arr A1xA2.comp_char A2.comp_arr_dom
apply (metis fst_conv snd_conv)
using A1xA2.arr_char preserves_comp A2.comp_cod_arr A1xA2.comp_char A1.comp_arr_dom
by (metis fst_conv snd_conv)
qed
lemma fixing_arr_gives_natural_transformation_2:
assumes "A2.arr f2"
shows "natural_transformation A1 B (λf1. F (f1, A2.dom f2)) (λf1. F (f1, A2.cod f2))
(λf1. F (f1, f2))"
proof -
interpret F': binary_functor A2 A1 B sym
using assms(1) sym_is_binary_functor by auto
have "natural_transformation A1 B (λf1. sym (A2.dom f2, f1)) (λf1. sym (A2.cod f2, f1))
(λf1. sym (f2, f1))"
using assms F'.fixing_arr_gives_natural_transformation_1 by fast
thus ?thesis by simp
qed
text‹
Fixing one or the other argument of a binary functor to be a composite arrow
yields a natural transformation that is a vertical composite.
›
lemma preserves_comp_1:
assumes "A1.seq f1' f1"
shows "(λf2. F (f1' ⋅⇩A⇩1 f1, f2)) =
vertical_composite.map A2 B (λf2. F (f1, f2)) (λf2. F (f1', f2))"
proof -
interpret τ: natural_transformation A2 B
‹λf2. F (A1.dom f1, f2)› ‹λf2. F (A1.cod f1, f2)› ‹λf2. F (f1, f2)›
using assms fixing_arr_gives_natural_transformation_1 by blast
interpret τ': natural_transformation A2 B
‹λf2. F (A1.cod f1, f2)› ‹λf2. F (A1.cod f1', f2)› ‹λf2. F (f1', f2)›
using assms fixing_arr_gives_natural_transformation_1 A1.seqE by metis
interpret τ'oτ: vertical_composite A2 B
‹λf2. F (A1.dom f1, f2)› ‹λf2. F (A1.cod f1, f2)› ‹λf2. F (A1.cod f1', f2)›
‹λf2. F (f1, f2)› ‹λf2. F (f1', f2)› ..
show "(λf2. F (f1' ⋅⇩A⇩1 f1, f2)) = τ'oτ.map"
proof
fix f2
have "¬A2.arr f2 ⟹ F (f1' ⋅⇩A⇩1 f1, f2) = τ'oτ.map f2"
using τ'oτ.is_extensional is_extensional by simp
moreover have "A2.arr f2 ⟹ F (f1' ⋅⇩A⇩1 f1, f2) = τ'oτ.map f2"
using τ'oτ.map_simp_1 assms fixing_arr_gives_natural_transformation_2
natural_transformation.preserves_comp_1
by fastforce
ultimately show "F (f1' ⋅⇩A⇩1 f1, f2) = τ'oτ.map f2" by blast
qed
qed
lemma preserves_comp_2:
assumes "A2.seq f2' f2"
shows "(λf1. F (f1, f2' ⋅⇩A⇩2 f2)) =
vertical_composite.map A1 B (λf1. F (f1, f2)) (λf1. F (f1, f2'))"
proof -
interpret F': binary_functor A2 A1 B sym
using assms(1) sym_is_binary_functor by auto
have "(λf1. sym (f2' ⋅⇩A⇩2 f2, f1)) =
vertical_composite.map A1 B (λf1. sym (f2, f1)) (λf1. sym (f2', f1))"
using assms F'.preserves_comp_1 by fastforce
thus ?thesis by simp
qed
end
text‹
A binary functor transformation is a natural transformation between binary functors.
We need a certain property of such transformations; namely, that if one or the
other argument is fixed to be an identity, the result is a natural transformation.
›
locale binary_functor_transformation =
A1: category A1 +
A2: category A2 +
B: category B +
A1xA2: product_category A1 A2 +
F: binary_functor A1 A2 B F +
G: binary_functor A1 A2 B G +
natural_transformation A1xA2.comp B F G τ
for A1 :: "'a1 comp" (infixr ‹⋅⇩A⇩1› 55)
and A2 :: "'a2 comp" (infixr ‹⋅⇩A⇩2› 55)
and B :: "'b comp" (infixr ‹⋅⇩B› 55)
and F :: "'a1 * 'a2 ⇒ 'b"
and G :: "'a1 * 'a2 ⇒ 'b"
and τ :: "'a1 * 'a2 ⇒ 'b"
begin
notation A1xA2.comp (infixr ‹⋅⇩A⇩1⇩x⇩A⇩2› 55)
notation A1xA2.in_hom (‹«_ : _ →⇩A⇩1⇩x⇩A⇩2 _»›)
lemma fixing_ide_gives_natural_transformation_1:
assumes "A1.ide a1"
shows "natural_transformation A2 B (λf2. F (a1, f2)) (λf2. G (a1, f2)) (λf2. τ (a1, f2))"
proof -
interpret Fa1: "functor" A2 B ‹λf2. F (a1, f2)›
using assms F.fixing_ide_gives_functor_1 by simp
interpret Ga1: "functor" A2 B ‹λf2. G (a1, f2)›
using assms "G.fixing_ide_gives_functor_1" by simp
show ?thesis
using assms is_extensional is_natural_1 is_natural_2
apply (unfold_locales, auto)
apply (metis A1.ide_char)
by (metis A1.ide_char)
qed
lemma fixing_ide_gives_natural_transformation_2:
assumes "A2.ide a2"
shows "natural_transformation A1 B (λf1. F (f1, a2)) (λf1. G (f1, a2)) (λf1. τ (f1, a2))"
proof -
interpret Fa2: "functor" A1 B ‹λf1. F (f1, a2)›
using assms F.fixing_ide_gives_functor_2 by simp
interpret Ga2: "functor" A1 B ‹λf1. G (f1, a2)›
using assms "G.fixing_ide_gives_functor_2" by simp
show ?thesis
using assms is_extensional is_natural_1 is_natural_2
apply (unfold_locales, auto)
apply (metis A2.ide_char)
by (metis A2.ide_char)
qed
end
end