Theory List-Infinite.SetInterval2
section ‹Sets of natural numbers›
theory SetInterval2
imports
"HOL-Library.Infinite_Set"
Util_Set
"../CommonArith/Util_MinMax"
"../CommonArith/Util_NatInf"
"../CommonArith/Util_Div"
begin
subsection ‹Auxiliary results for monotonic, injective and surjective functions over sets›
subsubsection ‹Monotonicity›
definition mono_on :: "('a::order ⇒ 'b::order) ⇒ 'a set ⇒ bool"
where "mono_on f A ≡ ∀a∈A. ∀b∈A. a ≤ b ⟶ f a ≤ f b"
definition strict_mono_on :: "('a::order ⇒ 'b::order) ⇒ 'a set ⇒ bool"
where "strict_mono_on f A ≡ ∀a∈A. ∀b∈A. a < b ⟶ f a < f b"
lemma mono_on_subset: "⟦ mono_on f A ; B ⊆ A ⟧ ⟹ mono_on f B"
unfolding mono_on_def by blast
lemma strict_mono_on_subset: "⟦ strict_mono_on f A ; B ⊆ A ⟧ ⟹ strict_mono_on f B"
unfolding strict_mono_on_def by blast
lemma mono_on_UNIV_mono_conv: "mono_on f UNIV = mono f"
unfolding mono_on_def mono_def by blast
lemma strict_mono_on_UNIV_strict_mono_conv: "
strict_mono_on f UNIV = strict_mono f"
unfolding strict_mono_on_def strict_mono_def by blast
lemma mono_imp_mono_on: "mono f ⟹ mono_on f A"
unfolding mono_on_def mono_def by blast
lemma strict_mono_imp_strict_mono_on: "strict_mono f ⟹ strict_mono_on f A"
unfolding strict_mono_on_def strict_mono_def by blast
lemma strict_mono_on_imp_mono_on: "strict_mono_on f A ⟹ mono_on f A"
apply (unfold strict_mono_on_def mono_on_def)
apply (fastforce simp: order_le_less)
done
subsubsection ‹Injectivity›
lemma inj_imp_inj_on: "inj f ⟹ inj_on f A"
unfolding inj_on_def by blast
lemma strict_mono_on_imp_inj_on: "
strict_mono_on f (A::'a::linorder set) ⟹ inj_on f A"
apply (unfold strict_mono_on_def inj_on_def, clarify)
apply (rule ccontr)
apply (fastforce simp add: linorder_neq_iff)
done
lemma strict_mono_imp_inj: "strict_mono (f::('a::linorder ⇒ 'b::order)) ⟹ inj f"
by (rule strict_mono_imp_inj_on)
lemma strict_mono_on_mono_on_conv: "
strict_mono_on f (A::'a::linorder set) = (mono_on f A ∧ inj_on f A)"
apply (rule iffI)
apply (frule strict_mono_on_imp_mono_on)
apply (frule strict_mono_on_imp_inj_on)
apply blast
apply (erule conjE)
apply (unfold inj_on_def mono_on_def strict_mono_on_def, clarify)
apply fastforce
done
corollary strict_mono_mono_conv: "
strict_mono (f::('a::linorder ⇒ 'b::order)) = (mono f ∧ inj f)"
by (simp only: strict_mono_on_UNIV_strict_mono_conv[symmetric]
mono_on_UNIV_mono_conv[symmetric] strict_mono_on_mono_on_conv)
lemma inj_on_image_mem_iff: "
⟦ inj_on f A; B ⊆ A; a ∈ A ⟧ ⟹ (f a ∈ f ` B) = (a ∈ B)"
unfolding inj_on_def by blast
corollary inj_on_union_image_Int: "
inj_on f (A ∪ B) ⟹ f ` (A ∩ B) = f ` A ∩ f ` B"
by (rule inj_on_image_Int[OF _ Un_upper1 Un_upper2])
subsubsection ‹Surjectivity›
definition surj_on :: "('a ⇒ 'b) ⇒ 'a set ⇒ 'b set ⇒ bool"
where "surj_on f A B ≡ ∀b∈B. ∃a∈A. b = f a"
lemma surj_on_conv: "(surj_on f A B) = (∀b∈B. ∃a∈A. b = f a)"
unfolding surj_on_def ..
lemma surj_on_image_conv: "(surj_on f A B) = (B ⊆ f ` A)"
unfolding surj_on_conv by blast
lemma surj_on_id: "surj_on id A A"
unfolding id_def surj_on_conv by blast
lemma
surj_onI: "⟦ ∀b ∈ B. ∃a∈A. b = f a ⟧ ⟹ surj_on f A B" and
surj_onD2: "surj_on f A B ⟹ ∀b ∈ B. ∃a∈A. b = f a" and
surj_onD: "⟦ surj_on f A B; b ∈ B ⟧ ⟹ ∃a∈A. b = f a"
unfolding surj_on_conv
by blast+
lemma comp_surj_on: "
⟦ surj_on f A B; surj_on g B C ⟧ ⟹ surj_on (g ∘ f) A C"
unfolding comp_def surj_on_image_conv by blast
lemma surj_on_Un_right: "surj_on f A (B1 ∪ B2) = (surj_on f A B1 ∧ surj_on f A B2)"
unfolding surj_on_image_conv
by blast
lemma surj_on_Un_left: "
surj_on f (A1 ∪ A2) B =
(∃B1. ∃B2. B ⊆ B1 ∪ B2 ∧ surj_on f A1 B1 ∧ surj_on f A2 B2)"
unfolding surj_on_image_conv
apply (rule iffI)
apply (rule_tac x="f ` A1" in exI)
apply (rule_tac x="f ` A2" in exI)
apply blast
apply blast
done
lemma surj_on_diff_right: "surj_on f A B ⟹ surj_on f A (B - B')"
unfolding surj_on_conv by blast
lemma surj_on_empty_right: "surj_on f A {}"
unfolding surj_on_conv by blast
lemma surj_on_empty_left: "surj_on f {} B = (B = {})"
unfolding surj_on_conv by blast
lemma surj_on_imageI: "surj_on (g ∘ f) A B ⟹ surj_on g (f ` A) B"
unfolding surj_on_conv by fastforce
lemma surj_on_insert_right: "surj_on f A (insert b B) = (surj_on f A B ∧ surj_on f A {b})"
unfolding surj_on_conv by blast
lemma surj_on_insert_left: "surj_on f (insert a A) B = (surj_on f A (B - {f a}))"
unfolding surj_on_conv by blast
lemma surj_on_subset_right: "⟦ surj_on f A B; B' ⊆ B ⟧ ⟹ surj_on f A B'"
unfolding surj_on_conv by blast
lemma surj_on_subset_left: "⟦ surj_on f A B; A ⊆ A' ⟧ ⟹ surj_on f A' B"
unfolding surj_on_conv by blast
lemma bij_betw_imp_surj_on: "bij_betw f A B ⟹ surj_on f A B"
unfolding bij_betw_def surj_on_image_conv by simp
lemma bij_betw_inj_on_surj_on_conv: "
bij_betw f A B = (inj_on f A ∧ surj_on f A B ∧ f ` A ⊆ B)"
unfolding bij_betw_def surj_on_image_conv by blast
subsubsection ‹Induction over natural sets›
lemma image_nat_induct: "
⟦ P (f 0); ⋀n. P (f n) ⟹ P (f (Suc n)); surj_on f UNIV I; a ∈ I ⟧ ⟹ P a"
proof -
assume as_P0: "P (f 0)"
and as_IA: "⋀n. P (f n) ⟹ P (f (Suc n))"
and as_surj_f: "surj_on f UNIV I"
and as_a: "a ∈ I"
have P_n:"⋀n. P (f n)"
apply (induct_tac n)
apply (simp only: as_P0)
apply (simp only: as_IA)
done
have "∀x∈I. ∃n. x = f n"
using as_surj_f
by (unfold surj_on_conv, blast)
hence "∃n. a = f n"
using as_a by blast
thus "P a"
using P_n by blast
qed
lemma nat_induct'[rule_format]: "
⟦ P n0; ⋀n. ⟦ n0 ≤ n; P n ⟧ ⟹ P (Suc n); n0 ≤ n ⟧ ⟹ P n"
by (insert nat_induct[where n="n-n0" and P="λn. P (n0+n)"], simp)
lemma enat_induct: "
⟦ P 0; P ∞; ⋀n. P n ⟹ P (eSuc n)⟧ ⟹ P n"
apply (case_tac n)
prefer 2
apply simp
apply (simp only: enat_defs)
apply (rename_tac n1)
apply (induct_tac n1)
apply (simp add: enat.splits)+
done
lemma eSuc_imp_Suc_aux_0:
"⟦ ⋀n. P n ⟹ P (eSuc n); n0' ≤ n'; P (enat n')⟧ ⟹ P (enat (Suc n'))"
by (simp only: enat_defs enat.splits)
lemma eSuc_imp_Suc_aux_n0:
"⟦ ⋀n. ⟦enat n0' ≤ n; P n⟧ ⟹ P (eSuc n); n0' ≤ n'; P (enat n')⟧ ⟹ P (enat (Suc n'))"
proof -
assume IA: "⋀n. ⟦enat n0' ≤ n; P n⟧ ⟹ P (eSuc n)"
and n0_n: "n0' ≤ n'"
and Pn: "P (enat n')"
from n0_n
have "(enat n0' ≤ enat n')" by simp
with Pn IA
have "P (eSuc (enat n'))" by blast
thus "P (enat (Suc n'))" by (simp only: eSuc_enat)
qed
lemma enat_induct': "
⟦ P (n0::enat); P ∞; ⋀n. ⟦ n0 ≤ n; P n ⟧ ⟹ P (eSuc n); n0 ≤ n ⟧ ⟹ P n"
apply (case_tac n)
prefer 2 apply simp
apply (case_tac n0)
prefer 2 apply simp
apply (rename_tac n' n0', simp)
apply (rule_tac ?n0.0="n0'" and n=n' and P="λn. P (enat n)" in nat_induct')
apply simp
apply (simp add: eSuc_enat[symmetric])
apply simp
done
lemma wf_less_interval:"
wf { (x,y). x ∈ (I::nat set) ∧ y ∈ I ∧ x < y }"
apply (rule wf_subset[where
p="{ (x,y). x ∈ I ∧ y ∈ I ∧ x < y }" and
r="{(x,y). x < y}"])
apply (rule wf_less)
apply blast
done
lemma interval_induct: "
⟦ ⋀x. ∀y. (x∈(I::nat set) ∧ y ∈ I ∧ y < x ⟶ P y) ⟹ P x ⟧
⟹ P a"
(is "⟦ ⋀x. ∀y. ?IA x y ⟹ P x ⟧ ⟹ P a")
apply (rule_tac r="{ (x,y). x ∈ I ∧ y ∈ I ∧ x < y }" in wf_induct)
apply (rule wf_less_interval)
apply simp
done
corollary interval_induct_rule:"
⟦ ⋀x. (⋀y. (x∈(I::nat set) ∧ y ∈ I ∧ y < x ⟹ P y)) ⟹ P x ⟧
⟹ P a"
by (blast intro: interval_induct)
subsubsection ‹Monotonicity and injectivity of artithmetic operators›
lemma add_left_inj: "inj (λx. n + (x::'a::cancel_ab_semigroup_add))"
by (simp add: inj_on_def)
lemma add_right_inj: "inj (λx. x + (n::'a::cancel_ab_semigroup_add))"
by (simp add: inj_on_def)
lemma mult_left_inj: "0 < n ⟹ inj (λx. (n::nat) * x)"
by (simp add: inj_on_def)
lemma mult_right_inj: "0 < n ⟹ inj (λx. x * (n::nat))"
by (simp add: inj_on_def)
lemma sub_left_inj_on: "inj_on (λx. (x::nat) - k) {k..}"
by (rule inj_onI, simp)
lemma sub_right_inj_on: "inj_on (λx. k - (x::nat)) {..k}"
by (rule inj_onI, simp)
lemma add_left_strict_mono: "strict_mono (λx. n + (x::'a::ordered_cancel_ab_semigroup_add))"
by (unfold strict_mono_def, clarify, rule add_strict_left_mono)
lemma add_right_strict_mono: "strict_mono (λx. x + (n::'a::ordered_cancel_ab_semigroup_add))"
by (unfold strict_mono_def, clarify, rule add_strict_right_mono)
lemma mult_left_strict_mono: "0 < n ⟹ strict_mono (λx. n * (x::nat))"
by (unfold strict_mono_def, clarify, simp)
lemma mult_right_strict_mono: "0 < n ⟹ strict_mono (λx. x * (n::nat))"
by (unfold strict_mono_def, clarify, simp)
lemma sub_left_strict_mono_on: "strict_mono_on (λx. (x::nat) - k) {k..}"
apply (rule strict_mono_on_mono_on_conv[THEN iffD2], rule conjI)
apply (unfold mono_on_def, clarify, simp)
apply (rule sub_left_inj_on)
done
lemma div_right_strict_mono_on: "
⟦ 0 < (k::nat); ∀x∈I. ∀y∈I. x < y ⟶ x + k ≤ y ⟧ ⟹
strict_mono_on (λx. x div k) I"
apply (unfold strict_mono_on_def, clarify)
apply (fastforce dest: div_le_mono[of _ _ k])
done
lemma mod_eq_div_right_strict_mono_on: "
⟦ 0 < (k::nat); ∀x∈I. ∀y∈I. x mod k = y mod k ⟧ ⟹
strict_mono_on (λx. x div k) I"
apply (rule div_right_strict_mono_on, simp)
apply (blast intro: less_mod_eq_imp_add_divisor_le)
done
corollary div_right_inj_on: "
⟦ 0 < (k::nat); ∀x∈I. ∀y∈I. x < y ⟶ x + k ≤ y ⟧ ⟹
inj_on (λx. x div k) I"
by (rule strict_mono_on_imp_inj_on[OF div_right_strict_mono_on])
corollary mod_eq_imp_div_right_inj_on: "
⟦ 0 < (k::nat); ∀x∈I. ∀y∈I. x mod k = y mod k ⟧ ⟹
inj_on (λx. x div k) I"
by (rule strict_mono_on_imp_inj_on[OF mod_eq_div_right_strict_mono_on])
subsection ‹‹Min› and ‹Max› elements of a set›
text ‹A special minimum operator is required for dealing with infinite wellordered sets
because the standard operator @{term "Min"} is usable only with finite sets.›
definition iMin :: "'a::wellorder set ⇒ 'a"
where "iMin I ≡ LEAST x. x ∈ I"
subsubsection ‹Basic results, as for ‹Least››
lemma iMinI: "k ∈ I ⟹ iMin I ∈ I"
unfolding iMin_def
by (rule_tac k=k in LeastI)
lemma iMinI_ex: "∃x. x ∈ I ⟹ iMin I ∈ I"
by (blast intro: iMinI)
corollary iMinI_ex2: "I ≠ {} ⟹ iMin I ∈ I"
by (blast intro: iMinI_ex)
lemma iMinI2: "⟦ k ∈ I; ⋀x. x ∈ I ⟹ P x ⟧ ⟹ P (iMin I)"
by (blast intro: iMinI)
lemma iMinI2_ex: "⟦ ∃x. x ∈ I; ⋀x. x ∈ I ⟹ P x ⟧ ⟹ P (iMin I)"
by (blast intro: iMinI_ex)
lemma iMinI2_ex2: "⟦ I ≠ {} ; ⋀x. x ∈ I ⟹ P x ⟧ ⟹ P (iMin I)"
by (blast intro: iMinI_ex2)
lemma iMin_le[dest]: "k ∈ I ⟹ iMin I ≤ k"
by (simp only: iMin_def Least_le)
lemma iMin_neq_imp_greater[dest]: "⟦ k ∈ I; k ≠ iMin I ⟧ ⟹ iMin I < k"
by (rule order_neq_le_trans[OF not_sym iMin_le])
lemma iMin_mono: "
⟦ mono f; ∃x. x ∈ I ⟧ ⟹ iMin (f ` I) = f (iMin I)"
apply (unfold iMin_def)
apply (rule Least_mono[of f I], simp)
apply (rule_tac x="iMin I" in bexI)
apply (simp add: iMin_le)
apply (simp add: iMinI_ex)
done
corollary iMin_mono2: "
⟦ mono f; I ≠ {} ⟧ ⟹ iMin (f ` I) = f (iMin I)"
by (blast intro: iMin_mono)
lemma not_less_iMin: "k < iMin I ⟹ k ∉ I"
unfolding iMin_def
by (rule not_less_Least)
lemma Collect_not_less_iMin: "k < iMin {x. P x} ⟹ ¬ P k"
by (drule not_less_iMin, blast)
lemma Collect_iMin_le: "P k ⟹ iMin {x. P x} ≤ k"
by (rule iMin_le, blast)
lemma Collect_minI: "⟦ k ∈ I; P (k::('a::wellorder)) ⟧ ⟹ ∃x∈I. P x ∧ (∀y∈I. y < x ⟶ ¬ P y)"
apply (rule_tac x="iMin {y ∈ I. P y}" in bexI)
prefer 2
apply (rule subsetD[OF _ iMinI, OF Collect_is_subset], blast)
apply (rule conjI)
apply (blast intro: iMinI2)
apply (blast dest: not_less_iMin)
done
corollary Collect_minI_ex: "∃k∈I. P (k::('a::wellorder)) ⟹ ∃x∈I. P x ∧ (∀y∈I. y < x ⟶ ¬ P y)"
by (erule bexE, rule Collect_minI)
corollary Collect_minI_ex2: "{k∈I. P (k::('a::wellorder))} ≠ {} ⟹ ∃x∈I. P x ∧ (∀y∈I. y < x ⟶ ¬ P y)"
by (drule ex_in_conv[THEN iffD2], blast intro: Collect_minI)
lemma iMin_the: "iMin I = (THE x. x ∈ I ∧ (∀y. y ∈ I ⟶ x ≤ y))"
by (simp add: iMin_def Least_def)
lemma iMin_the2: "iMin I = (THE x. x ∈ I ∧ (∀y∈I. x ≤ y))"
apply (simp add: iMin_the)
apply (subgoal_tac "⋀x. (∀y ∈ I. x ≤ y) = (∀y. y ∈ I ⟶ x ≤ y) ")
prefer 2 apply blast
apply simp
done
lemma iMin_equality: "
⟦ k ∈ I; ⋀x. x ∈ I ⟹ k ≤ x ⟧ ⟹ iMin I = k"
unfolding iMin_def
by (blast intro: Least_equality)
lemma iMin_mono_on: "
⟦ mono_on f I; ∃x. x ∈ I ⟧ ⟹ iMin (f ` I) = f (iMin I)"
apply (unfold mono_on_def)
apply (rule iMin_equality)
apply (blast intro: iMinI_ex)+
done
lemma iMin_mono_on2: "
⟦ mono_on f I; I ≠ {} ⟧ ⟹ iMin (f ` I) = f (iMin I)"
by (rule iMin_mono_on, blast+)
lemma iMinI2_order:"
⟦ k ∈ I; ⋀y. y ∈ I ⟹ k ≤ y;
⋀x. ⟦ x ∈ I; ∀y∈I. x ≤ y ⟧ ⟹ P x ⟧ ⟹
P (iMin I)"
by (simp add: iMin_def LeastI2_order)
lemma wellorder_iMin_lemma: "
k ∈ I ⟹ iMin I ∈ I ∧ iMin I ≤ k"
by (blast intro: iMinI iMin_le)
lemma iMin_Min_conv: "
⟦ finite I; I ≠ {} ⟧ ⟹ iMin I = Min I"
apply (rule order_antisym)
apply (rule Min_ge_iff[THEN iffD2], assumption+)
apply blast
apply (rule Min_le_iff[THEN iffD2], assumption+)
apply (blast intro: iMinI_ex2)
done
lemma Min_neq_imp_greater[dest]: "⟦ finite I; k ∈ I; k ≠ Min I ⟧ ⟹ Min I < k"
by (rule order_neq_le_trans[OF not_sym Min_le])
lemma Max_neq_imp_less[dest]: "⟦ finite I; k ∈ I; k ≠ Max I ⟧ ⟹ k < Max I"
by (rule order_neq_le_trans[OF _ Max_ge])
lemma nat_Least_mono: "
⟦ A ≠ {}; mono (f::(nat⇒nat)) ⟧ ⟹
(LEAST x. x ∈ f ` A) = f (LEAST x. x ∈ A)"
unfolding iMin_def[symmetric]
by (blast intro: iMin_mono2)
lemma Least_disj: "
⟦ ∃x. P x; ∃x. Q x ⟧ ⟹
(LEAST (x::'a::wellorder). (P x ∨ Q x)) = min (LEAST x. P x) (LEAST x. Q x)"
apply (elim exE, rename_tac x1 x2)
apply (subgoal_tac "⋀x1 x2 P Q. ⟦P x1; Q x2; Least P ≤ Least Q⟧ ⟹ (LEAST x. P x ∨ Q x) = Least P")
prefer 2
apply (rule Least_equality)
apply (blast intro: LeastI Least_le)
apply (erule disjE)
apply (rule Least_le, assumption)
apply (rule order_trans, assumption)
apply (rule Least_le, assumption)
apply (unfold min_def, split if_split, safe)
apply blast
apply (subst disj_commute)
apply (fastforce simp: linorder_not_le)
done
lemma Least_imp_le: "
⟦ ∃x. P x; ⋀x. P x ⟹ Q x ⟧ ⟹
(LEAST (x::'a::wellorder). Q x) ≤ (LEAST x. P x)"
by (blast intro: Least_le LeastI2_ex)
lemma Least_imp_disj_eq: "
⟦ ∃x. P x; ⋀x. P x ⟹ Q x ⟧ ⟹
(LEAST (x::'a::wellorder). P x ∨ Q x) = (LEAST x. Q x)"
apply (subst Least_disj, assumption, blast)
apply (subst min.commute)
apply (rule min.absorb_iff1[THEN iffD1])
apply (rule Least_imp_le, assumption, blast)
done
lemma Least_le_imp_le: "
⟦ ∃x. P x; ∃x. Q x; ⋀x y. ⟦ P x; Q y ⟧ ⟹ x ≤ y ⟧ ⟹
(LEAST (x::'a::wellorder). P x) ≤ (LEAST (x::'a::wellorder). Q x)"
by (blast intro: LeastI)
lemma Least_le_imp_le_disj: "
⟦ ∃x. P x; ⋀x y. ⟦ P x; Q y ⟧ ⟹ x ≤ y ⟧ ⟹
(LEAST (x::'a::wellorder). P x ∨ Q x) = (LEAST (x::'a::wellorder). P x)"
apply (case_tac "∃x. Q x")
apply (simp only: Least_disj min.absorb_iff1[THEN iffD1, OF Least_le_imp_le])
apply simp
done
lemma Max_equality: "⟦ (k::'a::linorder) ∈ A; finite A; ⋀x. x ∈ A ⟹ x ≤ k ⟧ ⟹
Max A = k"
by (rule Max_eqI)
lemma not_greater_Max: "⟦ finite A; Max A < k ⟧ ⟹ k ∉ A"
apply (rule ccontr, simp)
apply (frule Max_ge[of A k], blast)
apply (frule order_le_less_trans[of _ _ k], blast)
apply blast
done
lemma Collect_not_greater_Max: "⟦ finite {x. P x}; Max {x. P x} < k ⟧ ⟹ ¬ P k"
by (drule not_greater_Max, assumption, drule Collect_not_in_imp_not)
lemma Collect_Max_ge: "⟦ finite {x. P x}; P k ⟧ ⟹ k ≤ Max {x. P x}"
by (rule Max_ge, assumption, rule CollectI)
lemma MaxI: "⟦ k ∈ A; finite A ⟧ ⟹ Max A ∈ A"
by (case_tac "A = {}", simp_all)
lemma MaxI_ex: "⟦ ∃x. x ∈ A; finite A ⟧ ⟹ Max A ∈ A"
by (blast intro: MaxI)
lemma MaxI_ex2: "⟦ A ≠ {}; finite A ⟧ ⟹ Max A ∈ A"
by (blast intro: MaxI)
lemma MaxI2: "⟦ k ∈ A; ⋀x. x ∈ A ⟹ P x; finite A ⟧ ⟹ P (Max A)"
by (drule Max_in, blast+)
lemma MaxI2_ex:"⟦ ∃x. x ∈ A; ⋀x. x ∈ A ⟹ P x; finite A ⟧ ⟹ P (Max A)"
by (blast intro: MaxI2)
lemma MaxI2_ex2:"⟦ A ≠ {}; ⋀x. x ∈ A ⟹ P x; finite A ⟧ ⟹ P (Max A)"
by (blast intro: MaxI2)
lemma Max_mono: "⟦ mono f; ∃x. x ∈ A; finite A ⟧ ⟹ Max (f ` A) = f (Max A)"
apply (unfold mono_def)
apply clarify
apply (frule Max_in, blast)
apply (rule Max_equality, clarsimp+)
done
lemma Max_mono2:"⟦ mono f; A ≠ {}; finite A ⟧ ⟹ Max (f ` A) = f (Max A)"
by (blast intro: Max_mono)
lemma Max_mono_on: "⟦ mono_on f A; ∃x. x ∈ A; finite A ⟧ ⟹ Max (f ` A) = f (Max A)"
apply (unfold mono_on_def)
apply (rule Max_equality)
apply (blast intro: Max_in)
apply (rule finite_imageI, assumption)
apply (blast intro: Max_in Max_ge)
done
lemma Max_mono_on2: "
⟦ mono_on f A; A ≠ {}; finite A ⟧ ⟹ Max (f ` A) = f (Max A)"
by (rule Max_mono_on, blast+)
lemma Max_the: "
⟦ A ≠ {}; finite A ⟧ ⟹
Max A = (THE x. x ∈ A ∧ (∀y. y ∈ A ⟶ y ≤ x))"
apply (rule iffD1[OF eq_commute])
apply (rule the_equality, simp)
apply (rule sym)
apply (rule Max_equality)
apply blast+
done
lemma Max_the2: "⟦ A ≠ {}; finite A ⟧ ⟹
Max A = (THE x. x ∈ A ∧ (∀y∈A. y ≤ x))"
apply (simp add: Max_the)
apply (subgoal_tac "⋀x. (∀y∈A. y ≤ x) = (∀y. y ∈ A ⟶ y ≤ x) ")
prefer 2
apply blast
apply simp
done
lemma wellorder_Max_lemma: "⟦ k ∈ A; finite A ⟧ ⟹ Max A ∈ A ∧ k ≤ Max A"
by (case_tac "A = {}", simp_all)
lemma MaxI2_order: "⟦ k ∈ A; finite A; ⋀y. y ∈ A ⟹ y ≤ k;
⋀x. ⟦ x ∈ A; ∀y∈A. y ≤ x ⟧ ⟹ P x ⟧
⟹ P (Max A)"
by (simp add: Max_equality)
lemma Min_le_Max: "⟦ finite A; A ≠ {} ⟧ ⟹ Min A ≤ Max A"
by (rule Max_ge[OF _ Min_in])
lemma iMin_le_Max: "⟦ finite A; A ≠ {} ⟧ ⟹ iMin A ≤ Max A"
by (rule ssubst[OF iMin_Min_conv], assumption+, rule Min_le_Max)
subsubsection ‹‹Max› for sets over ‹enat››
definition iMax :: "nat set ⇒ enat"
where "iMax i ≡ if (finite i) then (enat (Max i)) else ∞"
lemma iMax_finite_conv: "finite I = (iMax I ≠ ∞)"
by (simp add: iMax_def)
lemma iMax_infinite_conv: "infinite I = (iMax I = ∞)"
by (simp add: iMax_def)
lemma "class.distrib_lattice (min::('a::linorder ⇒ 'a ⇒ 'a)) (≤) (<) max"
apply (subgoal_tac "class.order (≤) (<)")
prefer 2
apply (rule class.order.intro)
apply (rule class.preorder.intro)
apply (rule less_le_not_le)
apply (rule order_refl)
apply (rule order_trans, assumption+)
apply (rule class.order_axioms.intro)
apply (rule order_antisym, assumption+)
apply (subgoal_tac "class.linorder (≤) (<)")
prefer 2
apply (rule class.linorder.intro, assumption)
apply (rule class.linorder_axioms.intro)
apply (rule linorder_class.linear)
apply (rule class.distrib_lattice.intro)
apply (rule class.lattice.intro)
apply (rule class.semilattice_inf.intro, assumption)
apply (rule class.semilattice_inf_axioms.intro)
apply (rule le_minI1)
apply (rule le_minI2)
apply (rule conj_le_imp_min, assumption+)
apply (rule class.semilattice_sup.intro, assumption)
apply (rule class.semilattice_sup_axioms.intro)
apply (rule max.cobounded1)
apply (rule max.cobounded2)
apply (rule conj_le_imp_max, assumption+)
apply (rule class.distrib_lattice_axioms.intro)
apply (rule max_min_distrib2)
done
print_locale Lattices.distrib_lattice
lemma max_Min_eq_Min_max[rule_format]: "
finite A ⟹
A ≠ {} ⟶
max x (Min A) = Min {max x a |a. a ∈ A}"
apply (rule finite.induct[of A], simp_all del: insert_iff)
apply (rename_tac A1 a)
apply (case_tac "A1 = {}", simp)
apply (rule_tac
t="{max x b |b. b ∈ insert a A1}" and
s="insert (max x a) {max x b |b. b ∈ A1}"
in subst)
apply blast
apply (subst Min_insert, simp_all)
apply (case_tac "a ≤ Min A1")
apply (frule max_le_monoR[where x=x])
apply (simp only: min_eqL)
apply (simp only: linorder_not_le)
apply (frule max_le_monoR[where x=x, OF less_imp_le])
apply (simp only: min_eqR)
done
lemma max_iMin_eq_iMin_max: "
⟦ finite A; A ≠ {} ⟧ ⟹
max x (iMin A) = iMin {max x a |a. a ∈ A}"
apply (simp add: iMin_Min_conv)
apply (insert iMin_Min_conv[of "{max x a |a. a ∈ A}"], simp)
apply (subgoal_tac "finite {max x a |a. a ∈ A}")
prefer 2
apply simp
apply (simp add: max_Min_eq_Min_max)
done
lemma "⟦ finite A; A ≠{} ⟧ ⟹ ∀x∈A. x ≤ Max A"
by simp
subsubsection ‹‹Min› and ‹Max› for set operations›
lemma iMin_subset: "⟦ A ≠ {}; A ⊆ B ⟧ ⟹ iMin B ≤ iMin A"
by (blast intro: iMin_le iMinI_ex2)
lemma Max_subset: "⟦ A ≠ {}; A ⊆ B; finite B ⟧ ⟹ Max A ≤ Max B"
by (rule linorder_class.Max_mono)
lemma Min_subset: "⟦ A ≠ {}; A ⊆ B; finite B ⟧ ⟹ Min B ≤ Min A"
by (rule linorder_class.Min_antimono)
lemma iMin_Int_ge1: "(A ∩ B) ≠ {} ⟹ iMin A ≤ iMin (A ∩ B)"
by (rule iMin_subset[OF _ Int_lower1])
lemma iMin_Int_ge2: "(A ∩ B) ≠ {} ⟹ iMin B ≤ iMin (A ∩ B)"
by (rule iMin_subset[OF _ Int_lower2])
lemma iMin_Int_ge: "(A ∩ B) ≠ {} ⟹ max (iMin A) (iMin B) ≤ iMin (A ∩ B)"
apply (rule conj_le_imp_max)
apply (rule iMin_Int_ge1, assumption)
apply (rule iMin_Int_ge2, assumption)
done
lemma Max_Int_le1: "⟦ (A ∩ B) ≠ {}; finite A ⟧ ⟹ Max (A ∩ B) ≤ Max A"
by (rule Max_subset[OF _ Int_lower1])
lemma Max_Int_le2: "⟦ (A ∩ B) ≠ {}; finite B ⟧ ⟹ Max (A ∩ B) ≤ Max B"
by (rule Max_subset[OF _ Int_lower2])
lemma Max_Int_le: "⟦ (A ∩ B) ≠ {}; finite A; finite B ⟧ ⟹
Max (A ∩ B) ≤ min (Max A) (Max B)"
apply (rule conj_le_imp_min)
apply (rule Max_Int_le1, assumption+)
apply (rule Max_Int_le2, assumption+)
done
lemma iMin_Un[rule_format]: "
⟦ A ≠ {}; B ≠ {} ⟧ ⟹
iMin (A ∪ B) = min (iMin A) (iMin B)"
apply (rule order_antisym)
apply simp
apply (blast intro: iMin_subset)
apply (simp add: min_le_iff_disj)
apply (insert iMinI_ex2[of "A∪B"])
apply (blast intro: iMin_le)
done
lemma iMin_singleton[simp]: "iMin {a} = a"
by (rule singletonI[THEN iMinI, THEN singletonD])
lemma iMax_singleton[simp]: "iMax {a} = enat a"
by (simp add: iMax_def)
lemma Max_le_Min_imp_singleton: "
⟦ finite A; A ≠ {}; Max A ≤ Min A ⟧ ⟹ A = {Min A}"
apply (frule Max_le_iff[THEN iffD1, of _ "Min A"], assumption+)
apply (frule Min_ge_iff[THEN iffD1, of _ "Min A"], assumption, simp)
apply (rule set_eqI)
apply (unfold Ball_def)
apply (erule_tac x=x in allE, erule_tac x=x in allE)
apply (blast intro: order_antisym Min_in)
done
lemma Max_le_Min_conv_singleton: "
⟦ finite A; A ≠ {} ⟧ ⟹ (Max A ≤ Min A) = (∃x. A = {x})"
apply (rule iffI)
apply (rule_tac x="Min A" in exI)
apply (rule Max_le_Min_imp_singleton, assumption+)
apply fastforce
done
lemma Max_le_iMin_imp_le: "
⟦ finite A; Max A ≤ iMin B; a ∈ A; b ∈ B ⟧ ⟹ a ≤ b"
by (blast dest: Max_ge intro: order_trans)
lemma le_imp_Max_le_iMin: "
⟦ finite A; A ≠ {}; B ≠ {}; ∀a∈A. ∀b∈B. a ≤ b ⟧ ⟹ Max A ≤ iMin B"
by (blast intro: Max_in iMinI_ex2)
lemma Max_le_iMin_conv_le: "
⟦ finite A; A ≠ {}; B ≠ {} ⟧ ⟹ (Max A ≤ iMin B) = (∀a∈A. ∀b∈B. a ≤ b)"
by (blast intro: Max_le_iMin_imp_le le_imp_Max_le_iMin)
lemma Max_less_iMin_imp_less: "
⟦ finite A; Max A < iMin B; a ∈ A; b ∈ B ⟧ ⟹ a < b"
by (blast dest: Max_less_iff intro: order_less_le_trans iMin_le)
lemma less_imp_Max_less_iMin: "
⟦ finite A; A ≠ {}; B ≠ {}; ∀a∈A. ∀b∈B. a < b ⟧ ⟹ Max A < iMin B"
by (blast intro: Max_in iMinI_ex2)
lemma Max_less_iMin_conv_less: "
⟦ finite A; A ≠ {}; B ≠ {} ⟧ ⟹ (Max A < iMin B) = (∀a∈A. ∀b∈B. a < b)"
by (blast intro: Max_less_iMin_imp_less less_imp_Max_less_iMin)
lemma Max_less_iMin_imp_disjoint: "
⟦ finite A; Max A < iMin B ⟧ ⟹ A ∩ B = {}"
apply (case_tac "A = {}", simp)
apply (case_tac "B = {}", simp)
apply (rule disjoint_iff_not_equal[THEN iffD2])
apply (intro ballI)
apply (rule less_imp_neq)
by (rule Max_less_iMin_imp_less)
lemma iMin_in_idem: "n ∈ I ⟹ min n (iMin I) = iMin I"
by (simp add: iMin_le min_eqR)
lemma iMin_insert: "I ≠ {} ⟹ iMin (insert n I) = min n (iMin I)"
apply (subst insert_is_Un)
apply (subst iMin_Un)
apply simp_all
done
lemma iMin_insert_remove: "
iMin (insert n I) =
(if I - {n} = {} then n else min n (iMin (I - {n})))"
by (metis iMin_insert iMin_singleton insert_Diff_single)
lemma iMin_remove: "n ∈ I ⟹ iMin I = (if I - {n} = {} then n else min n (iMin (I - {n})))"
by (metis iMin_insert_remove insert_absorb)
lemma iMin_subset_idem: "⟦ B ≠ {}; B ⊆ A ⟧ ⟹ min (iMin B) (iMin A) = iMin A"
by (metis iMin_subset min.absorb2)
lemma iMin_union_inter: "A ∩ B ≠ {} ⟹ min (iMin (A ∪ B)) (iMin (A ∩ B)) = min (iMin A) (iMin B)"
by (metis Int_empty_left Int_lower2 Un_absorb2 Un_assoc Un_empty iMin_Un)
lemma iMin_ge_iff: "I ≠ {} ⟹ (n ≤ iMin I) = (∀a∈I. n ≤ a)"
by (metis Collect_iMin_le Collect_mem_eq iMinI_ex2 order_trans)
lemma iMin_gr_iff: "I ≠ {} ⟹ (n < iMin I) = (∀a∈I. n < a)"
by (metis iMinI_ex2 iMin_neq_imp_greater order_less_trans)
lemma iMin_le_iff: "I ≠ {} ⟹ (iMin I ≤ n) = (∃a∈I. a ≤ n)"
by (metis Collect_iMin_le Collect_mem_eq iMinI_ex2 order_trans)
lemma iMin_less_iff: "I ≠ {} ⟹ (iMin I < n) = (∃a∈I. a < n)"
by (metis iMinI_ex2 iMin_neq_imp_greater order_less_trans)
lemma hom_iMin_commute: "⟦ ⋀x y. h (min x y) = min (h x) (h y); I ≠ {} ⟧ ⟹ iMin (h ` I) = h (iMin I)"
apply (rule iMin_equality)
apply (blast intro: iMinI_ex2)
apply (rename_tac y)
apply (drule_tac x="iMin I" in meta_spec)
apply (clarsimp simp: image_iff, rename_tac x)
apply (drule_tac x=x in meta_spec)
apply (rule_tac t="h (iMin I)" and s="min (h (iMin I)) (h x)" in subst)
apply (simp add: min_eqL[OF iMin_le])
apply simp
done
text ‹Synonyms for similarity with theorem names for @{term Min}"›
lemmas iMin_eqI = iMin_equality
lemmas iMin_in = iMinI_ex2
subsection ‹Some auxiliary results for set operations›
subsubsection ‹Some additional abbreviations for relations›
text ‹Abbreviations for ‹refl›, ‹sym›, ‹equiv›, ‹refl›, ‹trans››
abbreviation (input) reflP :: "('a ⇒ 'a ⇒ bool) ⇒ bool" where
"reflP r ≡ refl {(x, y). r x y}"
abbreviation (input) symP :: "('a => 'a => bool) => bool" where
"symP r == sym {(x, y). r x y}"
abbreviation (input) transP :: "('a => 'a => bool) => bool" where
"transP r == trans {(x, y). r x y}"
abbreviation (input) equivP :: "('a ⇒ 'a ⇒ bool) ⇒ bool" where
"equivP r ≡ reflP r ∧ symP r ∧ transp r"
abbreviation (input) irreflP :: "('a ⇒ 'a ⇒ bool) ⇒ bool" where
"irreflP r ≡ irrefl {(x, y). r x y}"
text ‹Example for ‹reflP››
lemma "reflP ((≤)::('a::preorder ⇒ 'a ⇒ bool))"
by (simp add: refl_on_def)
text ‹Example for ‹symP››
lemma "symP (=)"
by (simp add: sym_def)
text ‹Example for ‹equivP››
lemma "equivP (=)"
by (simp add: trans_def refl_on_def sym_def)
text ‹Example for ‹irreflP››
lemma "irreflP ((<)::('a::preorder ⇒ 'a ⇒ bool))"
by (simp add: irrefl_def)
subsubsection ‹Auxiliary results for ‹singletons››
lemma singleton_not_empty: "{a} ≠ {}" by blast
lemma singleton_finite: "finite {a}" by blast
lemma singleton_ball: "(∀x∈{a}. P x) = P a" by blast
lemma singleton_bex: "(∃x∈{a}. P x) = P a" by blast
lemma subset_singleton_conv: "(A ⊆ {a}) = (A = {} ∨ A = {a})" by blast
lemma singleton_subset_conv: "({a} ⊆ A) = (a ∈ A)" by blast
lemma singleton_eq_conv: "({a} = {b}) = (a = b)" by blast
lemma singleton_subset_singleton_conv: "({a} ⊆ {b}) = (a = b)" by blast
lemma singleton_Int1_if: "{a} ∩ A = (if a ∈ A then {a} else {})"
by (split if_split, blast)
lemma singleton_Int2_if: "A ∩ {a} = (if a ∈ A then {a} else {})"
by (split if_split, blast)
lemma singleton_image: "f ` {a} = {f a}" by blast
lemma inj_on_singleton: "inj_on f {a}" by blast
lemma strict_mono_on_singleton: "strict_mono_on f {a}"
unfolding strict_mono_on_def by blast
subsubsection ‹Auxiliary results for ‹finite› and ‹infinite› sets›
lemma infinite_imp_not_singleton: "infinite A ⟹ ¬ (∃a. A = {a})" by blast
lemma infinite_insert: "infinite (insert a A) = infinite A"
by simp
lemma infinite_Diff_insert: "infinite (A - insert a B) = infinite (A - B)"
by simp
lemma subset_finite_imp_finite: "⟦ finite A; B ⊆ A ⟧ ⟹ finite B"
by (rule finite_subset)
lemma infinite_not_subset_finite: "⟦ infinite A; finite B ⟧ ⟹ ¬ A ⊆ B"
by (blast intro: subset_finite_imp_finite)
lemma Un_infinite_right: "infinite T ⟹ infinite (S ∪ T)" by blast
lemma Un_infinite_iff: "infinite (S ∪ T) = (infinite S ∨ infinite T)" by blast
text ‹Give own name to the lemma about finiteness of the integer image of a nat set›
corollary finite_A_int_A_conv: "finite A = finite (int ` A)"
proof -
have "inj_on int A"
by (auto intro: inj_onI)
then show ?thesis
by (simp add: finite_image_iff)
qed
text ‹Corresponding fact fo infinite sets›
corollary infinite_A_int_A_conv: "infinite A = infinite (int ` A)"
by (simp only: finite_A_int_A_conv)
lemma cartesian_product_infiniteL_imp_infinite: "⟦ infinite A; B ≠ {} ⟧ ⟹ infinite (A × B)"
by (blast dest: finite_cartesian_productD1)
lemma cartesian_product_infiniteR_imp_infinite: "⟦ infinite B; A ≠ {} ⟧ ⟹ infinite (A × B)"
by (blast dest: finite_cartesian_productD2)
lemma finite_nat_iff_bounded2: "
finite S = (∃(k::nat).∀n∈S. n < k)"
by (simp only: finite_nat_iff_bounded, blast)
lemma finite_nat_iff_bounded_le2: "
finite S = (∃(k::nat).∀n∈S. n ≤ k)"
by (simp only: finite_nat_iff_bounded_le, blast)
lemma nat_asc_chain_imp_unbounded: "
⟦ S ≠ {}; (∀m∈S. ∃n∈S. m < (n::nat)) ⟧ ⟹ ∀m. ∃n∈S. m ≤ n"
apply (rule allI)
apply (induct_tac m)
apply blast
apply (erule bexE)
apply (rename_tac n1)
apply (erule_tac x=n1 in ballE)
prefer 2
apply simp
apply (clarify, rename_tac x, rule_tac x=x in bexI)
apply simp_all
done
lemma infinite_nat_iff_asc_chain: "
S ≠ {} ⟹ infinite S = (∀m∈S. ∃n∈S. m < (n::nat))"
by (metis Max_in infinite_nat_iff_unbounded not_greater_Max)
lemma infinite_imp_asc_chain: "infinite S ⟹ ∀m∈S. ∃n∈S. m < (n::nat)"
by (rule infinite_nat_iff_asc_chain[THEN iffD1, OF infinite_imp_nonempty])
lemma infinite_image_imp_infinite: "infinite (f ` A) ⟹ infinite A"
by fastforce
lemma inj_on_imp_infinite_image: "⟦ infinite A; inj_on f A ⟧ ⟹ infinite (f ` A)"
apply (frule card_image)
apply (fastforce simp: card_eq_0_iff)
done
lemma inj_on_infinite_image_iff: "inj_on f A ⟹ infinite (f ` A) = infinite A"
apply (rule iffI)
apply (rule ccontr, simp)
apply (rule inj_on_imp_infinite_image, assumption+)
done
lemma inj_on_finite_image_iff: "inj_on f A ⟹ finite (f ` A) = finite A"
by (drule inj_on_infinite_image_iff, simp)
lemma nat_ex_greater_finite_Max_conv: "
A ≠ {} ⟹ (∃x∈A. (n::nat) < x) = (finite A ⟶ n < Max A)"
apply (rule iffI)
apply (blast intro: order_less_le_trans Max_ge)
apply (case_tac "finite A")
apply (blast intro: Max_in)
apply (drule infinite_nat_iff_unbounded[THEN iffD1, rule_format, of _ n])
apply blast
done
corollary nat_ex_greater_infinite_finite_Max_conv': "
(∃x∈A. (n::nat) < x) = (finite A ∧ A ≠ {} ∧ n < Max A ∨ infinite A)"
apply (case_tac "A = {}", blast)
apply (drule nat_ex_greater_finite_Max_conv[of _ n])
apply blast
done
subsubsection ‹Some auxiliary results for disjoint sets›
lemma disjoint_iff_in_not_in1: "(A ∩ B = {}) = (∀x∈A. x ∉ B)" by blast
lemma disjoint_iff_in_not_in2: "(A ∩ B = {}) = (∀x∈B. x ∉ A)" by blast
lemma disjoint_in_Un: "
⟦ A ∩ B = {}; x ∈ A ∪ B ⟧ ⟹ x ∉ A ∨ x ∉ B"
by (blast intro: disjoint_iff_in_not_in1[THEN iffD1])+
lemma partition_Union: "A ⊆ ⋃C ⟹ (⋃c∈C. A ∩ c) = A" by blast
lemma disjoint_partition_Int: "
∀c1∈C. ∀c2∈C. c1 ≠ c2 ⟶ c1 ∩ c2 = {} ⟹
∀a1∈{A ∩ c| c. c ∈ C}. ∀a2∈{A ∩ c| c. c ∈ C}.
a1 ≠ a2 ⟶ a1 ∩ a2 = {}"
by blast
lemma "{f x |x. x ∈ A} = (⋃x∈A. {f x})"
by fastforce
text ‹This lemma version drops the superfluous precondition @{term "finite (⋃C)"}
(and turns the resulting equation to the sensible order ‹card .. = k * card ..›).›
lemma card_partition: "
⟦ finite C; ⋀c. c ∈ C ⟹ card c = k; ⋀c1 c2. ⟦c1 ∈ C; c2 ∈ C; c1 ≠ c2⟧ ⟹ c1 ∩ c2 = {} ⟧ ⟹
card (⋃C) = k * card C"
by (metis card.infinite card_partition finite_Union mult_eq_if)
subsubsection ‹Some auxiliary results for subset relation›
lemma subset_image_Int: "A ⊆ B ⟹ f ` (A ∩ B) = f ` A ∩ f ` B"
by (simp only: Int_absorb2 image_mono)
lemma image_diff_disjoint_image_Int: "
⟦ f ` (A - B) ∩ f ` B = {} ⟧ ⟹
f ` (A ∩ B) = f ` A ∩ f ` B"
apply (rule set_eqI)
apply (simp add: image_iff)
apply blast
done
lemma subset_imp_Int_subset1: "A ⊆ C ⟹ A ∩ B ⊆ C"
by (rule subset_trans[of _ "C ∩ B", OF Int_mono, OF _ subset_refl Int_lower1])
lemma subset_imp_Int_subset2: "B ⊆ C ⟹ A ∩ B ⊆ C"
by (simp only: Int_commute[of A], rule subset_imp_Int_subset1)
subsubsection ‹Auxiliary results for intervals from ‹SetInterval››
lemmas set_interval_defs =
lessThan_def atMost_def
greaterThan_def atLeast_def
greaterThanLessThan_def atLeastLessThan_def
greaterThanAtMost_def atLeastAtMost_def
lemma image_add_atLeast:
"(λn::nat. n+k) ` {i..} = {i+k..}" (is "?A = ?B")
proof
show "?A ⊆ ?B" by fastforce
next
show "?B ⊆ ?A"
proof
fix n assume a: "n : ?B"
hence "n - k ∈ {i..}" by simp
moreover have "n = (n - k) + k" using a by fastforce
ultimately show "n ∈ ?A" by blast
qed
qed
lemma image_add_atMost:
"(λn::nat. n+k) ` {..i} = {k..i+k}" (is "?A = ?B")
proof -
have s1: "{..i} = {0..i}"
by (simp add: set_interval_defs)
then show "?A = ?B"
by simp
qed
corollary image_Suc_atLeast: "Suc ` {i..} = {Suc i..}"
by (insert image_add_atLeast[of "Suc 0"], simp)
corollary image_Suc_atMost: "Suc ` {..i} = {Suc 0..Suc i}"
by (insert image_add_atMost[of "Suc 0"], simp)
lemmas image_add_lemmas =
image_add_atLeastAtMost
image_add_atLeast
image_add_atMost
lemmas image_Suc_lemmas =
image_Suc_atLeastAtMost
image_Suc_atLeast
image_Suc_atMost
lemma atMost_atLeastAtMost_0_conv: "{..i::nat} = {0..i}"
by (simp add: set_interval_defs)
lemma atLeastAtMost_subset_atMost: "(k::'a::order) ≤ k' ⟹ {l..k} ⊆ {..k'}"
by (simp)
lemma lessThan_insert: "insert (n::'a::order) {..<n} = {..n}"
apply (rule set_eqI)
apply (clarsimp simp add: order_le_less)
apply blast
done
lemma greaterThan_insert: "insert (n::'a::order) {n<..} = {n..}"
apply (rule set_eqI)
apply (clarsimp simp add: order_le_less)
apply blast
done
lemma atMost_remove: "{..n} - {(n::'a::order)} = {..<n}"
apply (simp only: lessThan_insert[symmetric])
apply (rule Diff_insert_absorb)
apply simp
done
lemma atLeast_remove: "{n..} - {(n::'a::order)} = {n<..}"
apply (simp only: greaterThan_insert[symmetric])
apply (rule Diff_insert_absorb)
apply simp
done
lemma atMost_lessThan_conv: "{..n} = {..<Suc n}"
by (simp only: atMost_def lessThan_def less_Suc_eq_le)
lemma atLeastAtMost_atLeastLessThan_conv: "{l..u} = {l..<Suc u}"
by (simp only: atLeastAtMost_def atLeastLessThan_def atMost_lessThan_conv)
lemma atLeast_greaterThan_conv: "{Suc n..} = {n<..}"
by (simp only: atLeast_def greaterThan_def Suc_le_eq)
lemma atLeastAtMost_greaterThanAtMost_conv: "{Suc l..u} = {l<..u}"
by (simp only: greaterThanAtMost_def atLeastAtMost_def atLeast_greaterThan_conv)
lemma finite_subset_atLeastAtMost: "finite A ⟹ A ⊆ {Min A..Max A}"
by (simp add: subset_eq)
lemma Max_le_imp_subset_atMost: "
⟦ finite A; Max A ≤ n ⟧ ⟹ A ⊆ {..n}"
by (rule subset_trans[OF finite_subset_atLeastAtMost atLeastAtMost_subset_atMost])
lemma subset_atMost_imp_Max_le:"
⟦ finite A; A ≠ {}; A ⊆ {..n} ⟧ ⟹ Max A ≤ n"
by (simp add: subset_iff)
lemma subset_atMost_Max_le_conv: "
⟦ finite A; A ≠ {} ⟧ ⟹ (A ⊆ {..n}) = (Max A ≤ n)"
apply (rule iffI)
apply (blast intro: subset_atMost_imp_Max_le)
apply (rule Max_le_imp_subset_atMost, assumption+)
done
lemma iMin_atLeast: "iMin {n..} = n"
by (rule iMin_equality, simp_all)
lemma iMin_greaterThan: "iMin {n<..} = Suc n"
by (simp only: atLeast_Suc_greaterThan[symmetric] iMin_atLeast)
lemma iMin_atMost: "iMin {..(n::nat)} = 0"
by (rule iMin_equality, simp_all)
lemma iMin_lessThan: "0 < n ⟹ iMin {..<(n::nat)} = 0"
by (rule iMin_equality, simp_all)
lemma Max_atMost: "Max {..(n::nat)} = n"
by (rule Max_equality[OF _ finite_atMost], simp_all)
lemma Max_lessThan: "0 < n ⟹ Max {..<n} = n - Suc 0"
by (rule Max_equality[OF _ finite_lessThan], simp_all)
lemma iMin_atLeastLessThan: "m < n ⟹ iMin {m..<n} = m"
by (rule iMin_equality, simp_all)
lemma Max_atLeastLessThan: "m < n ⟹ Max {m..<n} = n - Suc 0"
by (rule Max_equality[OF _ finite_atLeastLessThan], simp_all add: less_imp_le_pred)
lemma iMin_greaterThanLessThan: "Suc m < n ⟹ iMin {m<..<n} = Suc m"
by (simp only: atLeastSucLessThan_greaterThanLessThan[symmetric] iMin_atLeastLessThan)
lemma Max_greaterThanLessThan: "Suc m < n ⟹ Max {m<..<n} = n - Suc 0"
by (simp only: atLeastSucLessThan_greaterThanLessThan[symmetric] Max_atLeastLessThan)
lemma iMin_greaterThanAtMost: "m < n ⟹ iMin {m<..n} = Suc m"
by (simp only: atLeastSucAtMost_greaterThanAtMost[symmetric] atLeastLessThanSuc_atLeastAtMost[symmetric] iMin_atLeastLessThan)
lemma Max_greaterThanAtMost: "m < n ⟹ Max {m<..(n::nat)} = n"
by (simp add: atLeastSucAtMost_greaterThanAtMost[symmetric] atLeastLessThanSuc_atLeastAtMost[symmetric] Max_atLeastLessThan)
lemma iMin_atLeastAtMost: "m ≤ n ⟹ iMin {m..n} = m"
by (rule iMin_equality, simp_all)
lemma Max_atLeastAtMost: "m ≤ n ⟹ Max {m..(n::nat)} = n"
by (rule Max_equality[OF _ finite_atLeastAtMost], simp_all)
lemma infinite_atLeast: "infinite {(n::nat)..}"
by (rule unbounded_k_infinite[of n], fastforce)
lemma infinite_greaterThan: "infinite {(n::nat)<..}"
by (simp add: atLeast_Suc_greaterThan[symmetric] infinite_atLeast)
lemma infinite_atLeast_int: "infinite {(n::int)..}"
apply (rule_tac f="λx. nat (x - n)" in inj_on_infinite_image_iff[THEN iffD1, rule_format])
apply (fastforce simp: inj_on_def)
apply (rule_tac t="((λx. nat (x - n)) ` {n..})" and s="{0..}" in subst)
apply (simp add: set_eq_iff image_iff Bex_def)
apply (clarify, rename_tac n1)
apply (rule_tac x="n + int n1" in exI)
apply simp_all
done
lemma infinite_greaterThan_int: "infinite {(n::int)<..}"
apply (simp only: atLeast_remove[symmetric])
apply (rule Diff_infinite_finite[OF singleton_finite])
apply (rule infinite_atLeast_int)
done
lemma infinite_atMost_int: "infinite {..(n::int)}"
apply (rule_tac f="λx. n - x" in inj_on_infinite_image_iff[THEN iffD1, rule_format])
apply (simp add: inj_on_def)
apply (rule_tac t="((-) n ` {..n})" and s="{0..}" in subst)
apply (simp add: set_eq_iff image_iff Bex_def)
apply (rule infinite_atLeast_int)
done
lemma infinite_lessThan_int: "infinite {..<(n::int)}"
apply (simp only: atMost_remove[symmetric])
apply (rule Diff_infinite_finite[OF singleton_finite])
apply (rule infinite_atMost_int)
done
subsubsection ‹Auxiliary results for @{term card}›
lemma sum_singleton: "(∑x∈{a}. f x) = f a"
by simp
lemma card_singleton: "card {a} = Suc 0"
by simp
lemma card_cartesian_product_singleton_right: "card (A × {x}) = card A"
by (simp add: card_cartesian_product)
lemma card_1_imp_singleton: "card A = Suc 0 ⟹ (∃a. A = {a})"
by (metis card_eq_SucD)
lemma card_1_singleton_conv: "(card A = Suc 0) = (∃a. A = {a})"
apply (rule iffI)
apply (simp add: card_1_imp_singleton)
apply fastforce
done
lemma card_gr0_imp_finite: "0 < card A ⟹ finite A"
by (rule ccontr, simp)
lemma card_gr0_imp_not_empty: "(0 < card A) ⟹ A ≠ {}"
by (rule ccontr, simp)
lemma not_empty_card_gr0_conv: "finite A ⟹ (A ≠ {}) = (0 < card A)"
by fastforce
lemma nat_card_le_Max: "card (A::nat set) ≤ Suc (Max A)"
apply (case_tac "finite A")
prefer 2
apply simp
apply (cut_tac card_mono[OF finite_atMost, of A "Max A"])
apply simp
apply fastforce
done
lemma Int_card1: "finite A ⟹ card (A ∩ B) ≤ card A"
by (rule card_mono, simp_all)
lemma Int_card2: "finite B ⟹ card (A ∩ B) ≤ card B"
by (simp only: Int_commute[of A], rule Int_card1)
lemma Un_card1: "⟦ finite A; finite B ⟧ ⟹ card A ≤ card (A ∪ B)"
by (rule card_mono, simp_all)
lemma Un_card2: "⟦ finite A; finite B ⟧ ⟹ card B ≤ card (A ∪ B)"
by (simp only: Un_commute[of A], rule Un_card1)
lemma card_Un_conv: "
⟦ finite A; finite B ⟧ ⟹
card (A ∪ B) = card A + card B - card (A ∩ B)"
by (simp only: card_Un_Int diff_add_inverse2)
lemma card_Int_conv: "
⟦ finite A; finite B ⟧ ⟹
card (A ∩ B) = card A + card B - card (A ∪ B)"
by (simp only: card_Un_Int diff_add_inverse)
text ‹Pigeonhole principle, dirichlet's box principle›
lemma pigeonhole_principle[rule_format]: "
card (f ` A) < card A ⟶ (∃x∈A. ∃y∈A. x ≠ y ∧ f x = f y)"
apply (case_tac "finite A")
prefer 2
apply simp
apply (rule finite.induct[of A])
apply simp_all
apply (clarsimp, rename_tac A1 a)
apply (case_tac "a ∈ A1", force simp: insert_absorb)
apply (case_tac "f a ∈ f ` A1", fastforce+)
done
corollary pigeonhole_principle_linorder[rule_format]: "
card (f ` A) < card (A::'a::linorder set) ⟹ (∃x∈A. ∃y∈A. x < y ∧ f x = f y)"
apply (drule pigeonhole_principle, clarify)
apply (drule neq_iff[THEN iffD1])
apply fastforce
done
corollary pigeonhole_mod: "
⟦ 0 < m; m < card A ⟧ ⟹ ∃x∈A. ∃y∈A. x < y ∧ x mod m = y mod m"
apply (rule pigeonhole_principle_linorder)
apply (rule le_less_trans[of _ "card {..<m}"])
apply (rule card_mono)
apply fastforce+
done
corollary pigeonhole_mod2: "
⟦ (0::nat) < m; m ≤ c; inj_on f {..c} ⟧ ⟹ ∃x≤c. ∃y≤c. x < y ∧ f x mod m = f y mod m"
apply (insert pigeonhole_mod[of m "f ` {..c}"])
apply (clarsimp simp add: card_image, rename_tac x y)
apply (subgoal_tac "x ≠ y")
prefer 2
apply blast
apply (drule neq_iff[THEN iffD1], safe)
apply blast
apply (blast intro: eq_commute[THEN iffD1])
done
end