Theory Sepref_Basic
section ‹Basic Definitions›
theory Sepref_Basic
imports
"HOL-Eisbach.Eisbach"
Separation_Logic_Imperative_HOL.Sep_Main
Refine_Monadic.Refine_Monadic
"Lib/Sepref_Misc"
"Lib/Structured_Apply"
Sepref_Id_Op
begin
no_notation i_ANNOT (infixr ‹:::⇩i› 10)
no_notation CONST_INTF (infixr ‹::⇩i› 10)
text ‹
In this theory, we define the basic concept of refinement
from a nondeterministic program specified in the
Isabelle Refinement Framework to an imperative deterministic one
specified in Imperative/HOL.
›
subsection ‹Values on Heap›
text ‹We tag every refinement assertion with the tag ‹hn_ctxt›, to
avoid higher-order unification problems when the refinement assertion
is schematic.›
definition hn_ctxt :: "('a⇒'c⇒assn) ⇒ 'a ⇒ 'c ⇒ assn"
where
"hn_ctxt P a c ≡ P a c"
definition pure :: "('b × 'a) set ⇒ 'a ⇒ 'b ⇒ assn"
where "pure R ≡ (λa c. ↑((c,a)∈R))"
lemma pure_app_eq: "pure R a c = ↑((c,a)∈R)" by (auto simp: pure_def)
lemma pure_eq_conv[simp]: "pure R = pure R' ⟷ R=R'"
unfolding pure_def
apply (rule iffI)
apply safe
apply (meson pure_assn_eq_conv)
apply (meson pure_assn_eq_conv)
done
lemma pure_rel_eq_false_iff: "pure R x y = false ⟷ (y,x)∉R"
by (auto simp: pure_def)
definition "is_pure P ≡ ∃P'. ∀x x'. P x x'=↑(P' x x')"
lemma is_pureI[intro?]:
assumes "⋀x x'. P x x' = ↑(P' x x')"
shows "is_pure P"
using assms unfolding is_pure_def by blast
lemma is_pureE:
assumes "is_pure P"
obtains P' where "⋀x x'. P x x' = ↑(P' x x')"
using assms unfolding is_pure_def by blast
lemma pure_pure[simp]: "is_pure (pure P)"
unfolding pure_def by rule blast
lemma pure_hn_ctxt[intro!]: "is_pure P ⟹ is_pure (hn_ctxt P)"
unfolding hn_ctxt_def[abs_def] .
definition "the_pure P ≡ THE P'. ∀x x'. P x x'=↑((x',x)∈P')"
lemma the_pure_pure[simp]: "the_pure (pure R) = R"
unfolding pure_def the_pure_def
by (rule theI2[where a=R]) auto
lemma is_pure_alt_def: "is_pure R ⟷ (∃Ri. ∀x y. R x y = ↑((y,x)∈Ri))"
unfolding is_pure_def
apply auto
apply (rename_tac P')
apply (rule_tac x="{(x,y). P' y x}" in exI)
apply auto
done
lemma pure_the_pure[simp]: "is_pure R ⟹ pure (the_pure R) = R"
unfolding is_pure_alt_def pure_def the_pure_def
apply (intro ext)
apply clarsimp
apply (rename_tac a c Ri)
apply (rule_tac a=Ri in theI2)
apply auto
done
lemma is_pure_conv: "is_pure R ⟷ (∃R'. R = pure R')"
unfolding pure_def is_pure_alt_def by force
lemma is_pure_the_pure_id_eq[simp]: "is_pure R ⟹ the_pure R = Id ⟷ R=pure Id"
by (auto simp: is_pure_conv)
lemma is_pure_iff_pure_assn: "is_pure P = (∀x x'. is_pure_assn (P x x'))"
unfolding is_pure_def is_pure_assn_def by metis
abbreviation "hn_val R ≡ hn_ctxt (pure R)"
lemma hn_val_unfold: "hn_val R a b = ↑((b,a)∈R)"
by (simp add: hn_ctxt_def pure_def)
definition "invalid_assn R x y ≡ ↑(∃h. h⊨R x y) * true"
abbreviation "hn_invalid R ≡ hn_ctxt (invalid_assn R)"
lemma invalidate_clone: "R x y ⟹⇩A invalid_assn R x y * R x y"
apply (rule entailsI)
unfolding invalid_assn_def
apply (auto simp: models_in_range mod_star_trueI)
done
lemma invalidate_clone': "R x y ⟹⇩A invalid_assn R x y * R x y * true"
apply (rule entailsI)
unfolding invalid_assn_def
apply (auto simp: models_in_range mod_star_trueI)
done
lemma invalidate: "R x y ⟹⇩A invalid_assn R x y"
apply (rule entailsI)
unfolding invalid_assn_def
apply (auto simp: models_in_range mod_star_trueI)
done
lemma invalid_pure_recover: "invalid_assn (pure R) x y = pure R x y * true"
apply (rule ent_iffI)
subgoal
apply (rule entailsI)
unfolding invalid_assn_def
by (auto simp: pure_def)
subgoal
unfolding invalid_assn_def
by (auto simp: pure_def)
done
lemma hn_invalidI: "h⊨hn_ctxt P x y ⟹ hn_invalid P x y = true"
apply (cases h)
apply (rule ent_iffI)
apply (auto simp: invalid_assn_def hn_ctxt_def)
done
lemma invalid_assn_cong[cong]:
assumes "x≡x'"
assumes "y≡y'"
assumes "R x' y' ≡ R' x' y'"
shows "invalid_assn R x y = invalid_assn R' x' y'"
using assms unfolding invalid_assn_def
by simp
subsection ‹Constraints in Refinement Relations›
lemma mod_pure_conv[simp]: "(h,as)⊨pure R a b ⟷ (as={} ∧ (b,a)∈R)"
by (auto simp: pure_def)
definition rdomp :: "('a ⇒ 'c ⇒ assn) ⇒ 'a ⇒ bool" where
"rdomp R a ≡ ∃h c. h ⊨ R a c"
abbreviation "rdom R ≡ Collect (rdomp R)"
lemma rdomp_ctxt[simp]: "rdomp (hn_ctxt R) = rdomp R"
by (simp add: hn_ctxt_def[abs_def])
lemma rdomp_pure[simp]: "rdomp (pure R) a ⟷ a∈Range R"
unfolding rdomp_def pure_def by auto
lemma rdom_pure[simp]: "rdom (pure R) = Range R"
unfolding rdomp_def[abs_def] pure_def by auto
lemma Range_of_constraint_conv[simp]: "Range (A∩UNIV×C) = Range A ∩ C"
by auto
subsection ‹Heap-Nres Refinement Calculus›
text ‹Predicate that expresses refinement. Given a heap
‹Γ›, program ‹c› produces a heap ‹Γ'› and
a concrete result that is related with predicate ‹R› to some
abstract result from ‹m››
definition "hn_refine Γ c Γ' R m ≡ nofail m ⟶
<Γ> c <λr. Γ' * (∃⇩Ax. R x r * ↑(RETURN x ≤ m)) >⇩t"
simproc_setup assn_simproc_hnr ("hn_refine Γ c Γ'")
= ‹K Seplogic_Auto.assn_simproc_fun›
lemma hn_refineI[intro?]:
assumes "nofail m
⟹ <Γ> c <λr. Γ' * (∃⇩Ax. R x r * ↑(RETURN x ≤ m)) >⇩t"
shows "hn_refine Γ c Γ' R m"
using assms unfolding hn_refine_def by blast
lemma hn_refineD:
assumes "hn_refine Γ c Γ' R m"
assumes "nofail m"
shows "<Γ> c <λr. Γ' * (∃⇩Ax. R x r * ↑(RETURN x ≤ m)) >⇩t"
using assms unfolding hn_refine_def by blast
lemma hn_refine_preI:
assumes "⋀h. h⊨Γ ⟹ hn_refine Γ c Γ' R a"
shows "hn_refine Γ c Γ' R a"
using assms unfolding hn_refine_def
by (auto intro: hoare_triple_preI)
lemma hn_refine_nofailI:
assumes "nofail a ⟹ hn_refine Γ c Γ' R a"
shows "hn_refine Γ c Γ' R a"
using assms by (auto simp: hn_refine_def)
lemma hn_refine_false[simp]: "hn_refine false c Γ' R m"
by rule auto
lemma hn_refine_fail[simp]: "hn_refine Γ c Γ' R FAIL"
by rule auto
lemma hn_refine_frame:
assumes "hn_refine P' c Q' R m"
assumes "P ⟹⇩t F * P'"
shows "hn_refine P c (F * Q') R m"
using assms
unfolding hn_refine_def entailst_def
apply clarsimp
apply (erule cons_pre_rule)
apply (rule cons_post_rule)
apply (erule fi_rule, frame_inference)
apply (simp only: star_aci)
apply simp
done
lemma hn_refine_cons:
assumes I: "P⟹⇩tP'"
assumes R: "hn_refine P' c Q R m"
assumes I': "Q⟹⇩tQ'"
assumes R': "⋀x y. R x y ⟹⇩t R' x y"
shows "hn_refine P c Q' R' m"
using R unfolding hn_refine_def
apply clarify
apply (rule cons_pre_rulet[OF I])
apply (rule cons_post_rulet)
apply assumption
apply (sep_auto simp: entailst_def)
apply (rule enttD)
apply (intro entt_star_mono I' R')
done
lemma hn_refine_cons_pre:
assumes I: "P⟹⇩tP'"
assumes R: "hn_refine P' c Q R m"
shows "hn_refine P c Q R m"
by (rule hn_refine_cons[OF I R]) sep_auto+
lemma hn_refine_cons_post:
assumes R: "hn_refine P c Q R m"
assumes I: "Q⟹⇩tQ'"
shows "hn_refine P c Q' R m"
using assms
by (rule hn_refine_cons[OF entt_refl _ _ entt_refl])
lemma hn_refine_cons_res:
"⟦ hn_refine Γ f Γ' R g; ⋀a c. R a c ⟹⇩t R' a c ⟧ ⟹ hn_refine Γ f Γ' R' g"
by (erule hn_refine_cons[OF entt_refl]) sep_auto+
lemma hn_refine_ref:
assumes LE: "m≤m'"
assumes R: "hn_refine P c Q R m"
shows "hn_refine P c Q R m'"
apply rule
apply (rule cons_post_rule)
apply (rule hn_refineD[OF R])
using LE apply (simp add: pw_le_iff)
apply (sep_auto intro: order_trans[OF _ LE])
done
lemma hn_refine_cons_complete:
assumes I: "P⟹⇩tP'"
assumes R: "hn_refine P' c Q R m"
assumes I': "Q⟹⇩tQ'"
assumes R': "⋀x y. R x y ⟹⇩t R' x y"
assumes LE: "m≤m'"
shows "hn_refine P c Q' R' m'"
apply (rule hn_refine_ref[OF LE])
apply (rule hn_refine_cons[OF I R I' R'])
done
lemma hn_refine_augment_res:
assumes A: "hn_refine Γ f Γ' R g"
assumes B: "g ≤⇩n SPEC Φ"
shows "hn_refine Γ f Γ' (λa c. R a c * ↑(Φ a)) g"
apply (rule hn_refineI)
apply (rule cons_post_rule)
apply (erule A[THEN hn_refineD])
using B
apply (sep_auto simp: pw_le_iff pw_leof_iff)
done
subsection ‹Product Types›
text ‹Some notion for product types is already defined here, as it is used
for currying and uncurrying, which is fundamental for the sepref tool›
definition prod_assn :: "('a1⇒'c1⇒assn) ⇒ ('a2⇒'c2⇒assn)
⇒ 'a1*'a2 ⇒ 'c1*'c2 ⇒ assn" where
"prod_assn P1 P2 a c ≡ case (a,c) of ((a1,a2),(c1,c2)) ⇒
P1 a1 c1 * P2 a2 c2"
notation prod_assn (infixr ‹×⇩a› 70)
lemma prod_assn_pure_conv[simp]: "prod_assn (pure R1) (pure R2) = pure (R1 ×⇩r R2)"
by (auto simp: pure_def prod_assn_def intro!: ext)
lemma prod_assn_pair_conv[simp]:
"prod_assn A B (a1,b1) (a2,b2) = A a1 a2 * B b1 b2"
unfolding prod_assn_def by auto
lemma prod_assn_true[simp]: "prod_assn (λ_ _. true) (λ_ _. true) = (λ_ _. true)"
by (auto intro!: ext simp: hn_ctxt_def prod_assn_def)
subsection "Convenience Lemmas"
lemma hn_refine_guessI:
assumes "hn_refine P f P' R f'"
assumes "f=f_conc"
shows "hn_refine P f_conc P' R f'"
using assms by simp
lemma imp_correctI:
assumes R: "hn_refine Γ c Γ' R a"
assumes C: "a ≤ SPEC Φ"
shows "<Γ> c <λr'. ∃⇩Ar. Γ' * R r r' * ↑(Φ r)>⇩t"
apply (rule cons_post_rule)
apply (rule hn_refineD[OF R])
apply (rule le_RES_nofailI[OF C])
apply (sep_auto dest: order_trans[OF _ C])
done
lemma hnr_pre_ex_conv:
shows "hn_refine (∃⇩Ax. Γ x) c Γ' R a ⟷ (∀x. hn_refine (Γ x) c Γ' R a)"
unfolding hn_refine_def
apply safe
apply (erule cons_pre_rule[rotated])
apply (rule ent_ex_postI)
apply (rule ent_refl)
apply sep_auto
done
lemma hnr_pre_pure_conv:
shows "hn_refine (Γ * ↑P) c Γ' R a ⟷ (P ⟶ hn_refine Γ c Γ' R a)"
unfolding hn_refine_def
by auto
lemma hn_refine_split_post:
assumes "hn_refine Γ c Γ' R a"
shows "hn_refine Γ c (Γ' ∨⇩A Γ'') R a"
apply (rule hn_refine_cons_post[OF assms])
by (rule entt_disjI1_direct)
lemma hn_refine_post_other:
assumes "hn_refine Γ c Γ'' R a"
shows "hn_refine Γ c (Γ' ∨⇩A Γ'') R a"
apply (rule hn_refine_cons_post[OF assms])
by (rule entt_disjI2_direct)
subsubsection ‹Return›
lemma hnr_RETURN_pass:
"hn_refine (hn_ctxt R x p) (return p) (hn_invalid R x p) R (RETURN x)"
apply rule
apply (sep_auto simp: hn_ctxt_def eintros: invalidate_clone')
done
lemma hnr_RETURN_pure:
assumes "(c,a)∈R"
shows "hn_refine emp (return c) emp (pure R) (RETURN a)"
unfolding hn_refine_def using assms
by (sep_auto simp: pure_def)
subsubsection ‹Assertion›
lemma hnr_FAIL[simp, intro!]: "hn_refine Γ c Γ' R FAIL"
unfolding hn_refine_def
by simp
lemma hnr_ASSERT:
assumes "Φ ⟹ hn_refine Γ c Γ' R c'"
shows "hn_refine Γ c Γ' R (do { ASSERT Φ; c'})"
using assms
apply (cases Φ)
by auto
subsubsection ‹Bind›
lemma bind_det_aux: "⟦ RETURN x ≤ m; RETURN y ≤ f x ⟧ ⟹ RETURN y ≤ m ⤜ f"
apply (rule order_trans[rotated])
apply (rule Refine_Basic.bind_mono)
apply assumption
apply (rule order_refl)
apply simp
done
lemma hnr_bind:
assumes D1: "hn_refine Γ m' Γ1 Rh m"
assumes D2:
"⋀x x'. RETURN x ≤ m ⟹ hn_refine (Γ1 * hn_ctxt Rh x x') (f' x') (Γ2 x x') R (f x)"
assumes IMP: "⋀x x'. Γ2 x x' ⟹⇩t Γ' * hn_ctxt Rx x x'"
shows "hn_refine Γ (m'⤜f') Γ' R (m⤜f)"
using assms
unfolding hn_refine_def
apply (clarsimp simp add: pw_bind_nofail)
apply (rule Hoare_Triple.bind_rule)
apply assumption
apply (clarsimp intro!: normalize_rules simp: hn_ctxt_def)
proof -
fix x' x
assume 1: "RETURN x ≤ m"
and "nofail m" "∀x. inres m x ⟶ nofail (f x)"
hence "nofail (f x)" by (auto simp: pw_le_iff)
moreover assume "⋀x x'. RETURN x ≤ m ⟹
nofail (f x) ⟶ <Γ1 * Rh x x'> f' x'
<λr'. ∃⇩Ar. Γ2 x x' * R r r' * true * ↑ (RETURN r ≤ f x)>"
ultimately have "⋀x'. <Γ1 * Rh x x'> f' x'
<λr'. ∃⇩Ar. Γ2 x x' * R r r' * true * ↑ (RETURN r ≤ f x)>"
using 1 by simp
also have "⋀r'. ∃⇩Ar. Γ2 x x' * R r r' * true * ↑ (RETURN r ≤ f x) ⟹⇩A
∃⇩Ar. Γ' * R r r' * true * ↑ (RETURN r ≤ f x)"
apply (sep_auto)
apply (rule ent_frame_fwd[OF IMP[THEN enttD]])
apply frame_inference
apply (solve_entails)
done
finally (cons_post_rule) have
R: "<Γ1 * Rh x x'> f' x'
<λr'. ∃⇩Ar. Γ' * R r r' * true * ↑(RETURN r ≤ f x)>"
.
show "<Γ1 * Rh x x' * true> f' x'
<λr'. ∃⇩Ar. Γ' * R r r' * true * ↑ (RETURN r ≤ m ⤜ f)>"
by (sep_auto heap: R intro: bind_det_aux[OF 1])
qed
subsubsection ‹Recursion›
definition "hn_rel P m ≡ λr. ∃⇩Ax. P x r * ↑(RETURN x ≤ m)"
lemma hn_refine_alt: "hn_refine Fpre c Fpost P m ≡ nofail m ⟶
<Fpre> c <λr. hn_rel P m r * Fpost>⇩t"
apply (rule eq_reflection)
unfolding hn_refine_def hn_rel_def
apply (simp add: hn_ctxt_def)
apply (simp only: star_aci)
done
lemma wit_swap_forall:
assumes W: "<P> c <λ_. true>"
assumes T: "(∀x. A x ⟶ <P> c <Q x>)"
shows "<P> c <λr. ¬⇩A (∃⇩Ax. ↑(A x) * ¬⇩A Q x r)>"
unfolding hoare_triple_def Let_def
apply (intro conjI impI allI)
subgoal by (elim conjE) (rule hoare_tripleD[OF W], assumption+) []
subgoal
apply (clarsimp, intro conjI allI)
apply1 (rule models_in_range)
applyS (rule hoare_tripleD[OF W]; assumption; fail)
apply1 (simp only: disj_not2, intro impI)
apply1 (drule spec[OF T, THEN mp])
apply1 (drule (2) hoare_tripleD(2))
by assumption
subgoal by (elim conjE) (rule hoare_tripleD[OF W], assumption+)
subgoal by (elim conjE) (rule hoare_tripleD[OF W], assumption+)
done
lemma hn_admissible:
assumes PREC: "precise Ry"
assumes E: "∀f∈A. nofail (f x) ⟶ <P> c <λr. hn_rel Ry (f x) r * F>"
assumes NF: "nofail (INF f∈A. f x)"
shows "<P> c <λr. hn_rel Ry (INF f∈A. f x) r * F>"
proof -
from NF obtain f where "f∈A" and "nofail (f x)"
by (simp only: refine_pw_simps) blast
with E have "<P> c <λr. hn_rel Ry (f x) r * F>" by blast
hence W: "<P> c <λ_. true>" by (rule cons_post_rule, simp)
from E have
E': "∀f. f∈A ∧ nofail (f x) ⟶ <P> c <λr. hn_rel Ry (f x) r * F>"
by blast
from wit_swap_forall[OF W E'] have
E'': "<P> c
<λr. ¬⇩A (∃⇩Axa. ↑ (xa ∈ A ∧ nofail (xa x)) *
¬⇩A (hn_rel Ry (xa x) r * F))>" .
thus ?thesis
apply (rule cons_post_rule)
unfolding entails_def hn_rel_def
apply clarsimp
proof -
fix h as p
assume A: "∀f. f∈A ⟶ (∃a.
((h, as) ⊨ Ry a p * F ∧ RETURN a ≤ f x)) ∨ ¬ nofail (f x)"
with ‹f∈A› and ‹nofail (f x)› obtain a where
1: "(h, as) ⊨ Ry a p * F" and "RETURN a ≤ f x"
by blast
have
"∀f∈A. nofail (f x) ⟶ (h, as) ⊨ Ry a p * F ∧ RETURN a ≤ f x"
proof clarsimp
fix f'
assume "f'∈A" and "nofail (f' x)"
with A obtain a' where
2: "(h, as) ⊨ Ry a' p * F" and "RETURN a' ≤ f' x"
by blast
moreover note preciseD'[OF PREC 1 2]
ultimately show "(h, as) ⊨ Ry a p * F ∧ RETURN a ≤ f' x" by simp
qed
hence "RETURN a ≤ (INF f∈A. f x)"
by (metis (mono_tags) le_INF_iff le_nofailI)
with 1 show "∃a. (h, as) ⊨ Ry a p * F ∧ RETURN a ≤ (INF f∈A. f x)"
by blast
qed
qed
lemma hn_admissible':
assumes PREC: "precise Ry"
assumes E: "∀f∈A. nofail (f x) ⟶ <P> c <λr. hn_rel Ry (f x) r * F>⇩t"
assumes NF: "nofail (INF f∈A. f x)"
shows "<P> c <λr. hn_rel Ry (INF f∈A. f x) r * F>⇩t"
apply (rule hn_admissible[OF PREC, where F="F*true", simplified])
apply simp
by fact+
lemma hnr_RECT_old:
assumes S: "⋀cf af ax px. ⟦
⋀ax px. hn_refine (hn_ctxt Rx ax px * F) (cf px) (F' ax px) Ry (af ax)⟧
⟹ hn_refine (hn_ctxt Rx ax px * F) (cB cf px) (F' ax px) Ry (aB af ax)"
assumes M: "(⋀x. mono_Heap (λf. cB f x))"
assumes PREC: "precise Ry"
shows "hn_refine
(hn_ctxt Rx ax px * F) (heap.fixp_fun cB px) (F' ax px) Ry (RECT aB ax)"
unfolding RECT_gfp_def
proof (simp, intro conjI impI)
assume "trimono aB"
hence "mono aB" by (simp add: trimonoD)
have "∀ax px.
hn_refine (hn_ctxt Rx ax px * F) (heap.fixp_fun cB px) (F' ax px) Ry
(gfp aB ax)"
apply (rule gfp_cadm_induct[OF _ _ ‹mono aB›])
apply rule
apply (auto simp: hn_refine_alt intro: hn_admissible'[OF PREC]) []
apply (auto simp: hn_refine_alt) []
apply clarsimp
apply (subst heap.mono_body_fixp[of cB, OF M])
apply (rule S)
apply blast
done
thus "hn_refine (hn_ctxt Rx ax px * F)
(ccpo.fixp (fun_lub Heap_lub) (fun_ord Heap_ord) cB px) (F' ax px) Ry
(gfp aB ax)" by simp
qed
lemma hnr_RECT:
assumes S: "⋀cf af ax px. ⟦
⋀ax px. hn_refine (hn_ctxt Rx ax px * F) (cf px) (F' ax px) Ry (af ax)⟧
⟹ hn_refine (hn_ctxt Rx ax px * F) (cB cf px) (F' ax px) Ry (aB af ax)"
assumes M: "(⋀x. mono_Heap (λf. cB f x))"
shows "hn_refine
(hn_ctxt Rx ax px * F) (heap.fixp_fun cB px) (F' ax px) Ry (RECT aB ax)"
unfolding RECT_def
proof (simp, intro conjI impI)
assume "trimono aB"
hence "flatf_mono_ge aB" by (simp add: trimonoD)
have "∀ax px.
hn_refine (hn_ctxt Rx ax px * F) (heap.fixp_fun cB px) (F' ax px) Ry
(flatf_gfp aB ax)"
apply (rule flatf_ord.fixp_induct[OF _ ‹flatf_mono_ge aB›])
apply (rule flatf_admissible_pointwise)
apply simp
apply (auto simp: hn_refine_alt) []
apply clarsimp
apply (subst heap.mono_body_fixp[of cB, OF M])
apply (rule S)
apply blast
done
thus "hn_refine (hn_ctxt Rx ax px * F)
(ccpo.fixp (fun_lub Heap_lub) (fun_ord Heap_ord) cB px) (F' ax px) Ry
(flatf_gfp aB ax)" by simp
qed
lemma hnr_If:
assumes P: "Γ ⟹⇩t Γ1 * hn_val bool_rel a a'"
assumes RT: "a ⟹ hn_refine (Γ1 * hn_val bool_rel a a') b' Γ2b R b"
assumes RE: "¬a ⟹ hn_refine (Γ1 * hn_val bool_rel a a') c' Γ2c R c"
assumes IMP: "Γ2b ∨⇩A Γ2c ⟹⇩t Γ'"
shows "hn_refine Γ (if a' then b' else c') Γ' R (if a then b else c)"
apply (rule hn_refine_cons[OF P])
apply1 (rule hn_refine_preI)
applyF (cases a; simp add: hn_ctxt_def pure_def)
focus
apply1 (rule hn_refine_split_post)
applyF (rule hn_refine_cons_pre[OF _ RT])
applyS (simp add: hn_ctxt_def pure_def)
applyS simp
solved
solved
apply1 (rule hn_refine_post_other)
applyF (rule hn_refine_cons_pre[OF _ RE])
applyS (simp add: hn_ctxt_def pure_def)
applyS simp
solved
solved
applyS (rule IMP)
applyS (rule entt_refl)
done
subsection ‹ML-Level Utilities›
ML ‹
signature SEPREF_BASIC = sig
val dest_lambda_rc: Proof.context -> term -> ((term * (term -> term)) * Proof.context)
val apply_under_lambda: (Proof.context -> term -> term) -> Proof.context -> term -> term
val is_nresT: typ -> bool
val mk_nresT: typ -> typ
val dest_nresT: typ -> typ
val mk_cequals: cterm * cterm -> cterm
val mk_entails: term * term -> term
val constrain_type_pre: typ -> term -> term
val mk_pair_in_pre: term -> term -> term -> term
val mk_compN_pre: int -> term -> term -> term
val mk_curry0_pre: term -> term
val mk_curry_pre: term -> term
val mk_curryN_pre: int -> term -> term
val mk_uncurry0_pre: term -> term
val mk_uncurry_pre: term -> term
val mk_uncurryN_pre: int -> term -> term
val hn_refine_conv: conv -> conv -> conv -> conv -> conv -> conv
val hn_refine_conv_a: conv -> conv
val hn_refine_concl_conv_a: (Proof.context -> conv) -> Proof.context -> conv
val dest_hn_refine: term -> term * term * term * term * term
val mk_hn_refine: term * term * term * term * term -> term
val is_hn_refine_concl: term -> bool
val dest_hnr_absfun: term -> bool * (term * term list)
val mk_hnr_absfun: bool * (term * term list) -> term
val mk_hnr_absfun': (term * term list) -> term
val star_permute_tac: Proof.context -> tactic
val mk_star: term * term -> term
val list_star: term list -> term
val strip_star: term -> term list
val is_true: term -> bool
val is_hn_ctxt: term -> bool
val dest_hn_ctxt: term -> term * term * term
val dest_hn_ctxt_opt: term -> (term * term * term) option
type phases_ctrl = {
trace: bool,
int_res: bool,
start: string option,
stop: string option
}
val dflt_phases_ctrl: phases_ctrl
val dbg_phases_ctrl: phases_ctrl
val flag_phases_ctrl: bool -> phases_ctrl
type phase = string * (Proof.context -> tactic') * int
val PHASES': phase list -> phases_ctrl -> Proof.context -> tactic'
end
structure Sepref_Basic: SEPREF_BASIC = struct
fun is_nresT (Type (@{type_name nres},[_])) = true | is_nresT _ = false
fun mk_nresT T = Type(@{type_name nres},[T])
fun dest_nresT (Type (@{type_name nres},[T])) = T | dest_nresT T = raise TYPE("dest_nresT",[T],[])
fun dest_lambda_rc ctxt (Abs (x,T,t)) = let
val (u,ctxt) = yield_singleton Variable.variant_fixes x ctxt
val u = Free (u,T)
val t = subst_bound (u,t)
val reconstruct = Term.lambda_name (x,u)
in
((t,reconstruct),ctxt)
end
| dest_lambda_rc _ t = raise TERM("dest_lambda_rc",[t])
fun apply_under_lambda f ctxt t = let
val ((t,rc),ctxt) = dest_lambda_rc ctxt t
val t = f ctxt t
in
rc t
end
fun mk_pair_in_pre x y r = Const (@{const_name Set.member}, dummyT) $
(Const (@{const_name Product_Type.Pair}, dummyT) $ x $ y) $ r
fun mk_uncurry_pre t = Const(@{const_name uncurry}, dummyT)$t
fun mk_uncurry0_pre t = Const(@{const_name uncurry0}, dummyT)$t
fun mk_uncurryN_pre 0 = mk_uncurry0_pre
| mk_uncurryN_pre 1 = I
| mk_uncurryN_pre n = mk_uncurry_pre o mk_uncurryN_pre (n-1)
fun mk_curry_pre t = Const(@{const_name curry}, dummyT)$t
fun mk_curry0_pre t = Const(@{const_name curry0}, dummyT)$t
fun mk_curryN_pre 0 = mk_curry0_pre
| mk_curryN_pre 1 = I
| mk_curryN_pre n = mk_curry_pre o mk_curryN_pre (n-1)
fun mk_compN_pre 0 f g = f $ g
| mk_compN_pre n f g = let
val g = fold (fn i => fn t => t$Bound i) (n-2 downto 0) g
val t = Const(@{const_name "Fun.comp"},dummyT) $ f $ g
val t = fold (fn i => fn t => Abs ("x"^string_of_int i,dummyT,t)) (n-1 downto 1) t
in
t
end
fun constrain_type_pre T t = Const(@{syntax_const "_type_constraint_"},T-->T) $ t
local open Conv in
fun hn_refine_conv c1 c2 c3 c4 c5 ct = case Thm.term_of ct of
@{mpat "hn_refine _ _ _ _ _"} => let
val cc = combination_conv
in
cc (cc (cc (cc (cc all_conv c1) c2) c3) c4) c5 ct
end
| _ => raise CTERM ("hn_refine_conv",[ct])
val hn_refine_conv_a = hn_refine_conv all_conv all_conv all_conv all_conv
fun hn_refine_concl_conv_a conv ctxt = Refine_Util.HOL_concl_conv
(fn ctxt => hn_refine_conv_a (conv ctxt)) ctxt
end
val mk_cequals = uncurry SMT_Util.mk_cequals
val mk_entails = HOLogic.mk_binrel @{const_name "entails"}
val mk_star = HOLogic.mk_binop @{const_name "Groups.times_class.times"}
fun list_star [] = @{term "emp::assn"}
| list_star [a] = a
| list_star (a::l) = mk_star (list_star l,a)
fun strip_star @{mpat "?a*?b"} = strip_star a @ strip_star b
| strip_star @{mpat "emp"} = []
| strip_star t = [t]
fun is_true @{mpat "true"} = true | is_true _ = false
fun is_hn_ctxt @{mpat "hn_ctxt _ _ _"} = true | is_hn_ctxt _ = false
fun dest_hn_ctxt @{mpat "hn_ctxt ?R ?a ?p"} = (R,a,p)
| dest_hn_ctxt t = raise TERM("dest_hn_ctxt",[t])
fun dest_hn_ctxt_opt @{mpat "hn_ctxt ?R ?a ?p"} = SOME (R,a,p)
| dest_hn_ctxt_opt _ = NONE
fun strip_abs_args (t as @{mpat "PR_CONST _"}) = (t,[])
| strip_abs_args @{mpat "?f$?a"} = (case strip_abs_args f of (f,args) => (f,args@[a]))
| strip_abs_args t = (t,[])
fun dest_hnr_absfun @{mpat "RETURN$?a"} = (true, strip_abs_args a)
| dest_hnr_absfun f = (false, strip_abs_args f)
fun mk_hnr_absfun (true,fa) = Autoref_Tagging.list_APP fa |> (fn a => @{mk_term "RETURN$?a"})
| mk_hnr_absfun (false,fa) = Autoref_Tagging.list_APP fa
fun mk_hnr_absfun' fa = let
val t = Autoref_Tagging.list_APP fa
val T = fastype_of t
in
case T of
Type (@{type_name nres},_) => t
| _ => @{mk_term "RETURN$?t"}
end
fun dest_hn_refine @{mpat "hn_refine ?P ?c ?Q ?R ?a"} = (P,c,Q,R,a)
| dest_hn_refine t = raise TERM("dest_hn_refine",[t])
fun mk_hn_refine (P,c,Q,R,a) = @{mk_term "hn_refine ?P ?c ?Q ?R ?a"}
val is_hn_refine_concl = can (HOLogic.dest_Trueprop #> dest_hn_refine)
fun star_permute_tac ctxt = ALLGOALS (simp_tac (put_simpset HOL_basic_ss ctxt addsimps @{thms star_aci}))
type phases_ctrl = {
trace: bool,
int_res: bool,
start: string option,
stop: string option
}
val dflt_phases_ctrl = {trace=false,int_res=false,start=NONE,stop=NONE}
val dbg_phases_ctrl = {trace=true,int_res=true,start=NONE,stop=NONE}
fun flag_phases_ctrl dbg = if dbg then dbg_phases_ctrl else dflt_phases_ctrl
type phase = string * (Proof.context -> tactic') * int
local
fun ph_range phases start stop = let
fun find_phase name = let
val i = find_index (fn (n,_,_) => n=name) phases
val _ = if i<0 then error ("No such phase: " ^ name) else ()
in
i
end
val i = case start of NONE => 0 | SOME n => find_phase n
val j = case stop of NONE => length phases - 1 | SOME n => find_phase n
val phases = take (j+1) phases |> drop i
val _ = case phases of [] => error "No phases selected, range is empty" | _ => ()
in
phases
end
in
fun PHASES' phases ctrl ctxt = let
val phases = ph_range phases (#start ctrl) (#stop ctrl)
val phases = map (fn (n,tac,d) => (n,tac ctxt,d)) phases
fun r [] _ st = Seq.single st
| r ((name,tac,d)::tacs) i st = let
val n = Thm.nprems_of st
val bailout_tac = if #int_res ctrl then all_tac else no_tac
fun trace_tac msg st = (if #trace ctrl then tracing msg else (); Seq.single st)
val trace_start_tac = trace_tac ("Phase " ^ name)
in
K trace_start_tac THEN' IF_EXGOAL (tac)
THEN_ELSE' (
fn i => fn st =>
if Thm.nprems_of st = n+d then
((trace_tac " Done" THEN r tacs i) st)
else
(trace_tac "*** Wrong number of produced goals" THEN bailout_tac) st
,
K (trace_tac "*** Phase tactic failed" THEN bailout_tac))
end i st
in
r phases
end
end
end
signature SEPREF_DEBUGGING = sig
val cfg_debug_all: bool Config.T
val is_debug: bool Config.T -> Proof.context -> bool
val is_debug': Proof.context -> bool
val DBG_CONVERSION: bool Config.T -> Proof.context -> conv -> tactic'
val DBG_CONVERSION': Proof.context -> conv -> tactic'
val tracing_tac': string -> Proof.context -> tactic'
val warning_tac': string -> Proof.context -> tactic'
val error_tac': string -> Proof.context -> tactic'
val dbg_trace_msg: bool Config.T -> Proof.context -> string -> unit
val dbg_trace_msg': Proof.context -> string -> unit
val dbg_msg_tac: bool Config.T -> (Proof.context -> int -> thm -> string) -> Proof.context -> tactic'
val dbg_msg_tac': (Proof.context -> int -> thm -> string) -> Proof.context -> tactic'
val msg_text: string -> Proof.context -> int -> thm -> string
val msg_subgoal: string -> Proof.context -> int -> thm -> string
val msg_from_subgoal: string -> (term -> Proof.context -> string) -> Proof.context -> int -> thm -> string
val msg_allgoals: string -> Proof.context -> int -> thm -> string
end
structure Sepref_Debugging: SEPREF_DEBUGGING = struct
val cfg_debug_all =
Attrib.setup_config_bool @{binding sepref_debug_all} (K false)
fun is_debug cfg ctxt = Config.get ctxt cfg orelse Config.get ctxt cfg_debug_all
fun is_debug' ctxt = Config.get ctxt cfg_debug_all
fun dbg_trace cfg ctxt obj =
if is_debug cfg ctxt then
tracing (@{make_string} obj)
else ()
fun dbg_trace' ctxt obj =
if is_debug' ctxt then
tracing (@{make_string} obj)
else ()
fun dbg_trace_msg cfg ctxt msg =
if is_debug cfg ctxt then
tracing msg
else ()
fun dbg_trace_msg' ctxt msg =
if is_debug' ctxt then
tracing msg
else ()
fun DBG_CONVERSION cfg ctxt cv i st =
Seq.single (Conv.gconv_rule cv i st)
handle e as THM _ => (dbg_trace cfg ctxt e; Seq.empty)
| e as CTERM _ => (dbg_trace cfg ctxt e; Seq.empty)
| e as TERM _ => (dbg_trace cfg ctxt e; Seq.empty)
| e as TYPE _ => (dbg_trace cfg ctxt e; Seq.empty);
fun DBG_CONVERSION' ctxt cv i st =
Seq.single (Conv.gconv_rule cv i st)
handle e as THM _ => (dbg_trace' ctxt e; Seq.empty)
| e as CTERM _ => (dbg_trace' ctxt e; Seq.empty)
| e as TERM _ => (dbg_trace' ctxt e; Seq.empty)
| e as TYPE _ => (dbg_trace' ctxt e; Seq.empty);
local
fun gen_subgoal_msg_tac do_msg msg ctxt = IF_EXGOAL (fn i => fn st => let
val t = nth (Thm.prems_of st) (i-1)
val _ = Pretty.block [Pretty.str msg, Pretty.fbrk, Syntax.pretty_term ctxt t]
|> Pretty.string_of |> do_msg
in
Seq.single st
end)
in
val tracing_tac' = gen_subgoal_msg_tac tracing
val warning_tac' = gen_subgoal_msg_tac warning
val error_tac' = gen_subgoal_msg_tac error
end
fun dbg_msg_tac cfg msg ctxt =
if is_debug cfg ctxt then (fn i => fn st => (tracing (msg ctxt i st); Seq.single st))
else K all_tac
fun dbg_msg_tac' msg ctxt =
if is_debug' ctxt then (fn i => fn st => (tracing (msg ctxt i st); Seq.single st))
else K all_tac
fun msg_text msg _ _ _ = msg
fun msg_from_subgoal msg sgmsg ctxt i st =
case try (nth (Thm.prems_of st)) (i-1) of
NONE => msg ^ "\n" ^ "Subgoal out of range"
| SOME t => msg ^ "\n" ^ sgmsg t ctxt
fun msg_subgoal msg = msg_from_subgoal msg (fn t => fn ctxt =>
Syntax.pretty_term ctxt t |> Pretty.string_of
)
fun msg_allgoals msg ctxt _ st =
msg ^ "\n" ^ Goal_Display.string_of_goal ctxt st
end
›
ML ‹
infix 1 THEN_NEXT THEN_ALL_NEW_LIST THEN_ALL_NEW_LIST'
signature STACTICAL = sig
val THEN_NEXT: tactic' * tactic' -> tactic'
val APPLY_LIST: tactic' list -> tactic'
val THEN_ALL_NEW_LIST: tactic' * tactic' list -> tactic'
val THEN_ALL_NEW_LIST': tactic' * (tactic' list * tactic') -> tactic'
end
structure STactical : STACTICAL = struct
infix 1 THEN_WITH_GOALDIFF
fun (tac1 THEN_WITH_GOALDIFF tac2) st = let
val n1 = Thm.nprems_of st
in
st |> (tac1 THEN (fn st => tac2 (Thm.nprems_of st - n1) st ))
end
fun (tac1 THEN_NEXT tac2) i =
tac1 i THEN_WITH_GOALDIFF (fn d => (
if d < ~1 then
(error "THEN_NEXT: Tactic solved more than one goal"; no_tac)
else
tac2 (i+1+d)
))
fun APPLY_LIST [] = K all_tac
| APPLY_LIST (tac::tacs) = tac THEN_NEXT APPLY_LIST tacs
fun (tac1 THEN_ALL_NEW_LIST tacs) i =
tac1 i
THEN_WITH_GOALDIFF (fn d =>
if d+1 <> length tacs then (
error "THEN_ALL_NEW_LIST: Tactic produced wrong number of goals"; no_tac
) else APPLY_LIST tacs i
)
fun (tac1 THEN_ALL_NEW_LIST' (tacs,rtac)) i =
tac1 i
THEN_WITH_GOALDIFF (fn d => let
val _ = if d+1 < length tacs then error "THEN_ALL_NEW_LIST': Tactic produced too few goals" else ();
val tacs' = tacs @ replicate (d + 1 - length tacs) rtac
in
APPLY_LIST tacs' i
end)
end
open STactical
›
end