Theory RefineG_Domain
section ‹General Domain Theory›
theory RefineG_Domain
imports "../Refine_Misc"
begin
subsection ‹General Order Theory Tools›
lemma chain_f_apply: "Complete_Partial_Order.chain (fun_ord le) F
⟹ Complete_Partial_Order.chain le {y . ∃f∈F. y = f x}"
unfolding Complete_Partial_Order.chain_def
by (auto simp: fun_ord_def)
lemma ccpo_lift:
assumes "class.ccpo lub le lt"
shows "class.ccpo (fun_lub lub) (fun_ord le) (mk_less (fun_ord le))"
proof -
interpret ccpo: ccpo lub le lt by fact
show ?thesis
apply unfold_locales
apply (simp_all only: mk_less_def fun_ord_def fun_lub_def)
apply simp
using ccpo.order_trans apply blast
using ccpo.order.antisym apply blast
using ccpo.ccpo_Sup_upper apply (blast intro: chain_f_apply)
using ccpo.ccpo_Sup_least apply (blast intro: chain_f_apply)
done
qed
lemma fun_lub_simps[simp]:
"fun_lub lub {} = (λx. lub {})"
"fun_lub lub {f} = (λx. lub {f x})"
unfolding fun_lub_def by auto
subsection ‹Flat Ordering›
lemma flat_ord_chain_cases:
assumes A: "Complete_Partial_Order.chain (flat_ord b) C"
obtains "C={}"
| "C={b}"
| x where "x≠b" and "C={x}"
| x where "x≠b" and "C={b,x}"
proof -
have "∃m1 m2. C ⊆ {m1,m2} ∧ (m1 = b ∨ m2 = b)"
apply (rule ccontr)
proof clarsimp
assume "∀m1 m2. C ⊆ {m1, m2} ⟶ m1≠b ∧ m2≠b"
then obtain m1 m2 where "m1∈C" "m2∈C"
"m1≠m2" "m1≠b" "m2≠b"
by blast
with A show False
unfolding Complete_Partial_Order.chain_def flat_ord_def
by auto
qed
then obtain m where "C ⊆ {m,b}" by blast
thus ?thesis
apply (cases "m=b")
using that
apply blast+
done
qed
lemma flat_lub_simps[simp]:
"flat_lub b {} = b"
"flat_lub b {x} = x"
"flat_lub b (insert b X) = flat_lub b X"
unfolding flat_lub_def
by auto
lemma flat_ord_simps[simp]:
"flat_ord b b x"
by (simp add: flat_ord_def)